Gravitational field of radiating non-twisting charged systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 35 (1978) no. 3, pp. 296-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Newman–Penrose spin coefficient formalism is used to obtain in explicit form all solUtions of the Einstein–Maxwell equations with thermodynamic radiation (i.e., radiation of Isaacson type) under the conditions that: 1) the radiation propagates along a geodesic congruence determined by the principal isotropic direction of the Maxwell tensor; 2) this congruence is a non-twisting, shear-free diverging congruence; 3) the spacetime has no angular singuiarities or background (low-frequency) gravitational waves.
@article{TMF_1978_35_3_a1,
     author = {V. I. Kslebnikov},
     title = {Gravitational field of radiating non-twisting charged systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {296--311},
     year = {1978},
     volume = {35},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_35_3_a1/}
}
TY  - JOUR
AU  - V. I. Kslebnikov
TI  - Gravitational field of radiating non-twisting charged systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 296
EP  - 311
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_35_3_a1/
LA  - ru
ID  - TMF_1978_35_3_a1
ER  - 
%0 Journal Article
%A V. I. Kslebnikov
%T Gravitational field of radiating non-twisting charged systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 296-311
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1978_35_3_a1/
%G ru
%F TMF_1978_35_3_a1
V. I. Kslebnikov. Gravitational field of radiating non-twisting charged systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 35 (1978) no. 3, pp. 296-311. http://geodesic.mathdoc.fr/item/TMF_1978_35_3_a1/

[1] Ya. B. Zeldovich, I. D. Novikov, Teoriya tyagoteniya i evolyutsiya zvezd, «Nauka», 1971

[2] S. W. Hawking, Commun. Math. Phys., 43 (1975), 199 | DOI | MR | Zbl

[3] R. A. Isaacson, Phys. Rev., 166, 1263 ; (1968), 1272 | DOI | DOI

[4] D. R. Brill, J. B. Hartle, Phys. Rev., 135 (1964), B271 | DOI | MR

[5] N. R. Sibgatullin, ZhETF, 66 (1974), 1187 | MR

[6] V. P. Frolov, TMF, 27 (1976), 337 | Zbl

[7] P. C. Vaidya, Proc. Ind. Acad. Sci., A33 (1951), 264 | MR | Zbl

[8] R. W. Lindquist, R. A. Schwartz, C. W. Misner, Phys. Rev., 137 (1965), B1364 | DOI | MR

[9] J. Plebanski, J. Stachel, J. Math. Phys., 9 (1968), 269 | DOI | Zbl

[10] W. Kinnersley, Phys. Rev., 186 (1969), 1335 | DOI | MR

[11] W. B. Bonnor, P. C. Vaidya, Papers in honour of J. L. Synge, Studies In Belativity, ed. L. O'Raifeartaigh, Clarendon Press, Oxford, 1972, 119 | MR

[12] V. P. Frolov, V. I. Khlebnikov, Problemy teorii gravitatsii i elementarnykh chastits, no. 8, Atomizdat, 1977, 22

[13] V. I. Khlebnikov, Problemy teorii gravitatsii i elementarnykh chastits, no. 9, Atomizdat, 1978, 116 | MR

[14] E. T. Newman, R. Penrose, J. Math. Phys., 3 (1962), 566 ; Errata, J. Math. Phys., 4 (1963), 998 | DOI | MR | DOI | Zbl

[15] G. A. Alekseev, V. I. Khlebnikov, EChAYa, 9:5 (1978) | Zbl

[16] R. W. Lind, General Relativity and Gravitation, 5 (1974), 25 | DOI | MR