Many-particle correlations in an $N$-particle system and many-particle scattering amplitudes
Teoretičeskaâ i matematičeskaâ fizika, Tome 35 (1978) no. 1, pp. 89-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The expansion of the energy of the symmetric ground state of a system of $N$ particles with respect to the density parameter is studied. The method of stationary phase in the multi-dimensional case is used to obtain estimates with respect to the density parameter of the Feynman diagrams of the perturbation theory series. The connection between the coefficients in the expansion of the energy in powers of the density and the many-particle Faddeev scattering amplitudes is established.
@article{TMF_1978_35_1_a9,
     author = {B. E. Grinyuk and I. V. Simenog},
     title = {Many-particle correlations in an~$N$-particle system and many-particle scattering amplitudes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {89--103},
     year = {1978},
     volume = {35},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_35_1_a9/}
}
TY  - JOUR
AU  - B. E. Grinyuk
AU  - I. V. Simenog
TI  - Many-particle correlations in an $N$-particle system and many-particle scattering amplitudes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 89
EP  - 103
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_35_1_a9/
LA  - ru
ID  - TMF_1978_35_1_a9
ER  - 
%0 Journal Article
%A B. E. Grinyuk
%A I. V. Simenog
%T Many-particle correlations in an $N$-particle system and many-particle scattering amplitudes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 89-103
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1978_35_1_a9/
%G ru
%F TMF_1978_35_1_a9
B. E. Grinyuk; I. V. Simenog. Many-particle correlations in an $N$-particle system and many-particle scattering amplitudes. Teoretičeskaâ i matematičeskaâ fizika, Tome 35 (1978) no. 1, pp. 89-103. http://geodesic.mathdoc.fr/item/TMF_1978_35_1_a9/

[1] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, «Nauka», 1964 | Zbl

[2] R. Dashen, S-keng Ma, A. Bernstein, Phys. Rev., 187 (1969), 345 | DOI | MR | Zbl

[3] V. S. Buslaev, S. P. Merkurev, Tr. MIAN SSSR, 110 (1970), 29 | MR | Zbl

[4] M. Ya. Amusia, V. N. Efimov, Ann. of Phys., 47 (1968), 377 | DOI

[5] R. D. Amado et al., Phys. Rev., D4 (1971), 1032

[6] I. V. Simenog, Phys. Lett., 46B (1973), 31 | DOI

[7] B. Jancovici, S. P. Merkuriev, Phys. Rev., A12 (1975), 2610 | DOI

[8] B. E. Grinyuk, I. V. Simenog, Preprint ITP-76-106E, Kiev, 1976

[9] L. D. Faddeev, ZhETF, 39 (1960), 1459 | MR

[10] O. A. Yakubovskii, YaF, 5 (1967), 1319

[11] L. D. Faddeev, Trudy problemnogo simpoziuma po yadernoi fizike, t. 1, Tbilisi, 1967

[12] V. V. Komarov, A. M. Popova, EChAYa, 5:4 (1974), 1075 | MR

[13] I. V. Simenog, Preprint ITP-71-110E, Kiev, 1971

[14] I. V. Simenog, TMF, 10 (1972), 360

[15] G. F. Filippov, V. N. Maksimenko, UFZh, 15 (1970), 1277

[16] V. N. Maksimenko, A. I. Steshenko, YaF, 13 (1971), 707

[17] V. I. Arnold, UMN, 28:5 (1973), 17 | MR | Zbl

[18] V. P. Maslov, Operatornye metody, «Nauka», 1973 | MR

[19] S. P. Merkurev, TMF, 8 (1971), 235

[20] R. G. Newton, Ann. of Phys., 74 (1972), 324 | DOI | MR

[21] M. Goldberger, K. Vatson, Teoriya stolknovenii, », 1966