Representation of coherent states in the theory of many-boson systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 35 (1978) no. 1, pp. 76-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A solution of the Bloch equation for the density matrix of a system of interacting Bose particles is found in the representation of coherent states. The matrix of the functional of the thermodynamic potential is represented by a functional series in eigenvalues of the annihilation operator, and the coefficient functions are matrix elements of the cluster operators. A simple functional integration in the partition function leads to the well-known quantum viriaI expansions and the standard perturbation theory series. The possibility of applying the expressions obtained here to the investigation of the $\lambda$-transition in liquid $\operatorname{He}^4$, and also their generalization to the case of a many-fermion system is discussed.
@article{TMF_1978_35_1_a8,
     author = {I. A. Vakarchuk},
     title = {Representation of coherent states in the theory of many-boson systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {76--88},
     year = {1978},
     volume = {35},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_35_1_a8/}
}
TY  - JOUR
AU  - I. A. Vakarchuk
TI  - Representation of coherent states in the theory of many-boson systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 76
EP  - 88
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_35_1_a8/
LA  - ru
ID  - TMF_1978_35_1_a8
ER  - 
%0 Journal Article
%A I. A. Vakarchuk
%T Representation of coherent states in the theory of many-boson systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 76-88
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1978_35_1_a8/
%G ru
%F TMF_1978_35_1_a8
I. A. Vakarchuk. Representation of coherent states in the theory of many-boson systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 35 (1978) no. 1, pp. 76-88. http://geodesic.mathdoc.fr/item/TMF_1978_35_1_a8/

[1] J. S. Langer, Phys. Rev., 167 (1968), 183 ; Kogerentnye sostoyaniya v kvantovoi teorii, Sb., «Mir», 1972, 147 | DOI | MR

[2] P. Garruthers, M. Nieto, Rev. Mod. Phys., 40 (1968), 411 ; Kogerentnye sostoyaniya v kvantovoi teorii, Sb., «Mir», 1972, 71 | DOI | MR

[3] I. A. Vakarchuk, Preprint ITF-77-28R, Kiev, 1977

[4] R. J. Glauber, Phys. Rev., 131 (1963), 2766 | DOI | MR

[5] A. S. Davydov, Kvantovaya mekhanika, «Nauka», 1973, str. 156 | MR

[6] T. D. Lee, C. N. Yang, Phys. Rev., 113 (1959), 1165 | DOI | MR | Zbl

[7] K. Khuang, Statisticheskaya mekhanika, «Mir», 1966, str. 332

[8] A. Z. Patashinskii, V. L. Pokrovskii, Fluktuatsionnaya teoriya fazovykh perekhodov, «Nauka», 1975 | MR

[9] K. G. Vilson, Dzh. Kogut, Renormalizatsionnaya gruppa i $\varepsilon$-razlozhenie, «Mir», 1975

[10] I. R. Yukhnovskii, DAN SSSR, 232 (1977), 312 ; Препринт ИТФ-76-45Р, Киев, 1977; Препринт ИТФ-76-24Р, Киев, 1976; УФЖ, 22 (1977), 315

[11] F. A. Berezin, Metod vtorichnogo kvantovaniya, «Nauka», 1965 | MR