Fluctuation effects in a model of displacive ferroelectrics
Teoretičeskaâ i matematičeskaâ fizika, Tome 35 (1978) no. 1, pp. 104-112
Cet article a éte moissonné depuis la source Math-Net.Ru
The self-consistent phonon field method is used to investigate the phase transition in a model of a displacive ferroelectric. It is shown that the zeroth approximation of the method takes into account the fluctuations of the order parameter and is equivalent to the renormalized Landau expansion of the free energy. An iteration procedure is proposed for calculating the order parameter, this taking into account systematically the principal terms of the second order of the theory.
@article{TMF_1978_35_1_a10,
author = {V. L. Aksenov and N. M. Plakida},
title = {Fluctuation effects in a~model of displacive ferroelectrics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {104--112},
year = {1978},
volume = {35},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1978_35_1_a10/}
}
V. L. Aksenov; N. M. Plakida. Fluctuation effects in a model of displacive ferroelectrics. Teoretičeskaâ i matematičeskaâ fizika, Tome 35 (1978) no. 1, pp. 104-112. http://geodesic.mathdoc.fr/item/TMF_1978_35_1_a10/
[1] N. S. Gillis, Phys. Rev., B11 (1975), 309 | DOI
[2] A. I. Sokolov, FTT, 16 (1974), 733; ЖЭТФ, 68 (1975), 1137
[3] R. Conte, J. de Phys., 35 (1974), 67 | DOI
[4] N. M. Plakida, V. L. Aksenov, FTT, 15 (1973), 2575
[5] N. M. Plakida, V. L. Aksenov, TMF, 34 (1978), 364
[6] V. G. Vaks, Vvedenie v mikroskopicheskuyu teoriyu segnetoelektrikov, «Nauka», 1973
[7] M. L. Klein, T. R. Koehler, Rare Gas Solids, vol. 1, Academic Press, 1976, 301
[8] V. G. Vaks, A. I. Larkin, S. A. Pikin, ZhETF, 51 (1966), 361
[9] M. L. Klein, G. K. Horton, V. V. Goldman, Phys. Rev., B2 (1970), 1995
[10] A. Z. Patashinskii, V. A. Pokrovskii, UFN, 121 (1977), 55 | DOI | MR