Method of self-consistent phonon field in the theory of structural transitions
Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 3, pp. 353-363 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of the self-consistent phonon field provides the basis for a general discussion of lattice dynamics in a structural transition, in particular, the criterion for the appearance of a soft mode and the connection between the dynamical and thermodynamical conditions for the transition temperature. The first and second orders in the method of the selfconsistent phonon field are considered, and the role of fluctuations of the order parameter is elucidated.
@article{TMF_1978_34_3_a6,
     author = {V. L. Aksenov and N. M. Plakida},
     title = {Method of self-consistent phonon field in the theory of structural transitions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {353--363},
     year = {1978},
     volume = {34},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_34_3_a6/}
}
TY  - JOUR
AU  - V. L. Aksenov
AU  - N. M. Plakida
TI  - Method of self-consistent phonon field in the theory of structural transitions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 353
EP  - 363
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_34_3_a6/
LA  - ru
ID  - TMF_1978_34_3_a6
ER  - 
%0 Journal Article
%A V. L. Aksenov
%A N. M. Plakida
%T Method of self-consistent phonon field in the theory of structural transitions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 353-363
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1978_34_3_a6/
%G ru
%F TMF_1978_34_3_a6
V. L. Aksenov; N. M. Plakida. Method of self-consistent phonon field in the theory of structural transitions. Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 3, pp. 353-363. http://geodesic.mathdoc.fr/item/TMF_1978_34_3_a6/

[1] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, «Nauka», 1976, gl. 14 | MR

[2] W. Cochran, Adv. Phys., 9 (1960), 387 ; 10 (1961), 401 ; П. Андерсон, Физика диэлектриков, Изд-во АН СССР, 1960, 290 | DOI | Zbl | DOI | Zbl

[3] N. M. Plakida, Statisticheskaya fizika i kvantovaya teoriya polya, Sb., ed. N. N. Bogolyubov, «Nauka», 1973, 205 | MR

[4] N. S. Gillis, Dynamical properties of solids, Vol. II, ch. 2, eds. G. K. Horton, A. A. Maradudin, North-Holl. and Publ., 1975, 107

[5] N. S. Gillis, Phys. Rev., B11 (1975), 309 | DOI

[6] A. I. Sokolov, FTT, 16 (1974), 733; ЖЭТФ, 68 (1975), 1137

[7] A. Z. Patashinskii, V. L. Pokrovskii, Fluktuatsionnaya teoriya fazovykh perekhodov, «Nauka», 1975 | MR

[8] N. N. Bogolyubov, S. V. Tyablikov, Dokl. AN SSSR, 126 (1959), 53 ; Д. Н. Зубарев, УФН, 71 (1960), 71 | Zbl | DOI | MR

[9] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, 1962 | MR | Zbl

[10] W. Götze, K. H. Michel, Z. Phys., 217 (1968), 170 | DOI

[11] A. I. Larkin, D. E. Khmelnitskii, ZhETF, 56 (1969), 2087

[12] P. S. Zyryanov, Problemy fiziki tverdogo tela, no. 31, IFM UNTs AN SSSR, Sverdlovsk, 1975

[13] V. G. Vaks, Vvedenie v mikroskopicheskuyu teoriyu segnetoelektrikov, «Nauka», 1973

[14] A. I. Larkin, S. A. Pikin, ZhETF, 56 (1969), 1665