Poincar\'e invariant differential equations for particles of arbitrary spin
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 3, pp. 319-333
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Differential equations of first and second order describing the motion of a relativistic particle with arbitrary spin are derived. These equations provide the basis for an exact solution of the problem of the motion of a particle of arbitrary spin in a homogeneous magnetic field. Covariant operators for the coordinate and spin of the particle are found, and these differ from the well-known Newton–Wigner and Foldy–Wouthuysen operators. The Hamiltonian of a particle interacting with an external electromagnetic field is approximately diagonalized.
			
            
            
            
          
        
      @article{TMF_1978_34_3_a3,
     author = {A. G. Nikitin and W. I. Fushchych},
     title = {Poincar\'e invariant differential equations for particles of arbitrary spin},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {319--333},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_34_3_a3/}
}
                      
                      
                    TY - JOUR AU - A. G. Nikitin AU - W. I. Fushchych TI - Poincar\'e invariant differential equations for particles of arbitrary spin JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1978 SP - 319 EP - 333 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1978_34_3_a3/ LA - ru ID - TMF_1978_34_3_a3 ER -
A. G. Nikitin; W. I. Fushchych. Poincar\'e invariant differential equations for particles of arbitrary spin. Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 3, pp. 319-333. http://geodesic.mathdoc.fr/item/TMF_1978_34_3_a3/
