Self-similar solutions of the Korteweg--de~Vries equation and potentials with a~trivial $S$-matrix
Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 3, pp. 426-430

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Korteweg–de Vries equation with the initial condition $N(N+1)x^{-2}$ has self-similar solution of the form $u(x,t)=-2[\ln f(x,t)]_{xx}$, where $f$ is a polynomial in $x$ and $t$ whose coefficients are determined by recursion formulas.
@article{TMF_1978_34_3_a12,
     author = {L. A. Bordag and V. B. Matveev},
     title = {Self-similar solutions of the {Korteweg--de~Vries} equation and potentials with a~trivial $S$-matrix},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {426--430},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_34_3_a12/}
}
TY  - JOUR
AU  - L. A. Bordag
AU  - V. B. Matveev
TI  - Self-similar solutions of the Korteweg--de~Vries equation and potentials with a~trivial $S$-matrix
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 426
EP  - 430
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_34_3_a12/
LA  - ru
ID  - TMF_1978_34_3_a12
ER  - 
%0 Journal Article
%A L. A. Bordag
%A V. B. Matveev
%T Self-similar solutions of the Korteweg--de~Vries equation and potentials with a~trivial $S$-matrix
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 426-430
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1978_34_3_a12/
%G ru
%F TMF_1978_34_3_a12
L. A. Bordag; V. B. Matveev. Self-similar solutions of the Korteweg--de~Vries equation and potentials with a~trivial $S$-matrix. Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 3, pp. 426-430. http://geodesic.mathdoc.fr/item/TMF_1978_34_3_a12/