Quasiclassical asymptotic behavior for Wigner's $3j$-symbols
Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 1, pp. 110-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Expressions for Wigner's $3j$-symbols are considered which hold in the asymptotic limit of large quantum numbers of the angular momenta. It is shown that, depending on the quantum numbers of the angular momentum projections, there exist three types of expression: “classical”, “tunnel”, “transition”. Numerical calculations have been made of the values of definite $3j$-symbols in accordance with exact and approximate expressions, and these show that the expressions have a good accuracy already for angular momenta of order 5.
@article{TMF_1978_34_1_a9,
     author = {K. S. Borodin and A. E. Kroshilin and V. V. Tolmachev},
     title = {Quasiclassical asymptotic behavior for {Wigner's} $3j$-symbols},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {110--121},
     year = {1978},
     volume = {34},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a9/}
}
TY  - JOUR
AU  - K. S. Borodin
AU  - A. E. Kroshilin
AU  - V. V. Tolmachev
TI  - Quasiclassical asymptotic behavior for Wigner's $3j$-symbols
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 110
EP  - 121
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a9/
LA  - ru
ID  - TMF_1978_34_1_a9
ER  - 
%0 Journal Article
%A K. S. Borodin
%A A. E. Kroshilin
%A V. V. Tolmachev
%T Quasiclassical asymptotic behavior for Wigner's $3j$-symbols
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 110-121
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a9/
%G ru
%F TMF_1978_34_1_a9
K. S. Borodin; A. E. Kroshilin; V. V. Tolmachev. Quasiclassical asymptotic behavior for Wigner's $3j$-symbols. Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 1, pp. 110-121. http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a9/

[1] E. Vigner, Teoriya grupp i ee prilozheniya k kvantovomekhanicheskoi teorii atomnykh spektrov, gl. 24, 27, IL, 1961 | MR

[2] Spectroscopic and group theoretical methods in physics, Racah Memorial Volume, Amsterdam, 1968

[3] P. T. Brassard, H. A. Tolholk, Physica, 23 (1957), 955 | DOI | MR

[4] A. K. Edmonds, Angular Momentum in Quantum Mechanics, Geneva, 1955 | MR

[5] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, «Nauka», 1965 | MR

[6] A. E. Kroshilin, V. V. Tolmachev, Usp. matem. n., 29:6 (1974), 201–202 | MR

[7] A. E. Kroshilin, V. V. Tolmachev, Issledovaniya po mekhanike zhidkostei i tverdykh tel, Sb., MGU, 1977, 10

[8] K. Schulten, R. G. Garden, J. Math. Phys., 16 (1975), 1971 | DOI | MR

[9] E. T. Kopson, Asimptoticheskie razlozheniya, «Mir», 1966

[10] Dzh. Kheding, Vvedenie v metod fazovykh integralov, «Mir», 1965

[11] E. Kondon, G. Shortli, Teoriya atomnykh spektrov, IL, 1949

[12] L. Mishel, M. Shaaf, Simmetriya v kvantovoi fizike, «Mir», 1974