Generalized Fokker–Planck equation and construction of projection operators for different methods of reduced description of nonequilibrium states
Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 1, pp. 69-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed for constructing generalized Fokker–Planck equations by means of projection into the space of “coarse” variables, the form of the projection operator being determined by the condition of correspondence with the nonequilibrium statistical operator method. Examples are given of the construction of the projection operators for different methods of reduced description of the nonequilibrium state.
@article{TMF_1978_34_1_a6,
     author = {D. N. Zubarev and A. M. Khazanov},
     title = {Generalized {Fokker{\textendash}Planck} equation and construction of projection operators for different methods of reduced description of nonequilibrium states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {69--80},
     year = {1978},
     volume = {34},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a6/}
}
TY  - JOUR
AU  - D. N. Zubarev
AU  - A. M. Khazanov
TI  - Generalized Fokker–Planck equation and construction of projection operators for different methods of reduced description of nonequilibrium states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 69
EP  - 80
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a6/
LA  - ru
ID  - TMF_1978_34_1_a6
ER  - 
%0 Journal Article
%A D. N. Zubarev
%A A. M. Khazanov
%T Generalized Fokker–Planck equation and construction of projection operators for different methods of reduced description of nonequilibrium states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 69-80
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a6/
%G ru
%F TMF_1978_34_1_a6
D. N. Zubarev; A. M. Khazanov. Generalized Fokker–Planck equation and construction of projection operators for different methods of reduced description of nonequilibrium states. Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 1, pp. 69-80. http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a6/

[1] K. Kawasaki, Ann. Phys., 61 (1970), 1 ; Critical phenomena, Proc. Int. School Phys. “Enrico Fermi” Course, Acad. Press, N. Y.–London, 1971; Kvantovaya teoriya polya i fizika fazovykh perekhodov, Sb., «Mir», 1975 | DOI

[2] R. W. Zwanzig, J. Chem. Phys., 33 (1960), 1338 ; Phys. Rev., 124 (1961), 983 | DOI | MR | DOI | Zbl

[3] H. Mori, Progr. Theor. Phys., 33 (1965), 423 | DOI | MR | Zbl

[4] D. N. Zubarev, V. P. Kalashnikov, TMF, 3 (1970), 126 | MR

[5] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, «Nauka», 1971

[6] M. V. Sergeev, TMF, 21 (1974), 402 | MR | Zbl

[7] S. V. Tischenko, TMF, 26 (1976), 96 | Zbl

[8] M. S. Green, J. Chem. Phys., 20 (1952), 1281 ; 22 (1954), 398 | DOI | MR | DOI | MR

[9] A. G. Bashkirov, D. N. Zubarev, TMF, 1 (1969), 407 ; Physica, 48 (1970), 137 | DOI | MR

[10] N. Hashitsume, Progr. Theor. Phys., 8 (1952), 461 | DOI | MR | Zbl

[11] N. G. Van Kampen, Physica, 20 (1954), 603 ; 23, 707; (1954), 816 | DOI | MR | Zbl

[12] G. L. Sewell, Physica, 31 (1965), 1520 | DOI | MR

[13] D. N. Zubarev, DAN SSSR, 95 (1954), 757 | MR | Zbl

[14] I. R. Yukhnovskii, ZhETF, 34 (1958), 379; УФЖ, 4 (1959), 167 | MR

[15] K. Kawasaki, J. D. Gunton, Phys. Rev., 8A (1973), 2048 | DOI | MR

[16] D. N. Zubarev, M. Yu. Novikov, TMF, 13 (1972), 406 ; Fortschr. Phys., 21 (1973), 703 | DOI

[17] D. N. Zubarev, V. P. Kalashnikov, Physica, 56 (1971), 345 | DOI | MR

[18] D. N. Zubarev, V. P. Kalashnikov, TMF, 7 (1971), 372 | Zbl

[19] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR