Scaling at short distances and the behavior of $R(s)$ as $s\to\infty$
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 1, pp. 137-141
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that scaling behavior at short distances of the $c$-number part of the
commutator of the hadronic electromagnetic current does not in general entail
asymptotic constancy of the branching ratio 
$$
R(s)\equiv\sigma(e^-e^+\tohadrons)/ \sigma(e^-e^+\to\mu^-\mu^+),
$$
$s=(p_{e^-}+p_{e^+})^2$ at large $s$. It is found that the structure of the leading singularity of the current commutator near the light cone is directly related to the asymptotic behavior of the function 
$$
\displaystyle\langle R\rangle(s)\equiv s^{-1}\int_{4m_\pi^2}^sR(s')\,ds'
$$
 as $s\to\infty$.
			
            
            
            
          
        
      @article{TMF_1978_34_1_a11,
     author = {A. V. Kudinov and K. G. Chetyrkin},
     title = {Scaling at short distances and the behavior of $R(s)$ as $s\to\infty$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {137--141},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a11/}
}
                      
                      
                    TY - JOUR AU - A. V. Kudinov AU - K. G. Chetyrkin TI - Scaling at short distances and the behavior of $R(s)$ as $s\to\infty$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1978 SP - 137 EP - 141 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a11/ LA - ru ID - TMF_1978_34_1_a11 ER -
A. V. Kudinov; K. G. Chetyrkin. Scaling at short distances and the behavior of $R(s)$ as $s\to\infty$. Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 1, pp. 137-141. http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a11/