Classical equations of Euclidean field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 1, pp. 15-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the nonlinear elliptic equation $\Delta u=F(u)+f(x)$ in the whole of the space $R^n$. It is shown that if the function $f(x)$ has compact support and $F(u)$ satisfies the conditions $F(0)=0$, $F'(u)\geqslant\varkappa^2>0$, where $\varkappa$ is a constant, then a classical solution of this equation in the class of bounded functions exists, is unique, and decreases exponentially at infinity. Some cases when the condition $F'(u)\geqslant\varkappa^2$ is not satisfied are also considered. In particular, it is shown for the Goldstone model that at least two bounded solutions exist.
@article{TMF_1978_34_1_a1,
     author = {I. V. Volovich},
     title = {Classical equations of {Euclidean} field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {15--22},
     year = {1978},
     volume = {34},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a1/}
}
TY  - JOUR
AU  - I. V. Volovich
TI  - Classical equations of Euclidean field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1978
SP  - 15
EP  - 22
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a1/
LA  - ru
ID  - TMF_1978_34_1_a1
ER  - 
%0 Journal Article
%A I. V. Volovich
%T Classical equations of Euclidean field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1978
%P 15-22
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a1/
%G ru
%F TMF_1978_34_1_a1
I. V. Volovich. Classical equations of Euclidean field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 1, pp. 15-22. http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a1/

[1] B. Saimon, Model $P(\varphi)_2$ evklidovoi kvantovoi teorii polya, «Mir», 1976

[2] J. Iliopoulos, C. Itzykson, A. Martin, Rev. Mod. Phys., 47 (1975), 165 | DOI | MR

[3] A. Z. Patashinskii, V. L. Pokrovskii, Fluktuatsionnaya teoriya fazovykh perekhodov, «Nauka», 1975 | MR

[4] K. Jorgens, Math. Z., 77 (1961), 295 | DOI | MR | Zbl

[5] I. Segal, Ann. Math., 78 (1963), 339 | DOI | MR | Zbl

[6] C. S. Morawetz, W. A. Strauss, Commun. Pure Appl. Math., 26 (1973), 47 | DOI | MR | Zbl

[7] J. M. Chadam, J. Funct. Anal., 2 (1973), 173 | DOI | MR

[8] J. Derrik, J. Math. Phys., 5 (1964), 1252 | DOI | MR

[9] L. D. Faddeev, Nelokalnye, nelineinye i nerenormiruemye teorii polya, Sb., OIYaI, Dubna, 1976 | MR

[10] T. Kato, Commun. Pure Appl. Math., 12 (1959), 403 | DOI | MR | Zbl

[11] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, «Nauka», 1976 | MR | Zbl

[12] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, «Nauka», 1973 | MR

[13] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, «Nauka», 1969 | MR