Classical equations of Euclidean field theory
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 1, pp. 15-22
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A study is made of the nonlinear elliptic equation $\Delta u=F(u)+f(x)$ in the whole of the space $R^n$. It is shown that if the function $f(x)$ has compact support and $F(u)$ satisfies the conditions $F(0)=0$, $F'(u)\geqslant\varkappa^2>0$, where $\varkappa$ is a constant, then a classical 
solution of this equation in the class of bounded functions exists, is unique, and decreases exponentially at infinity. Some cases when the condition $F'(u)\geqslant\varkappa^2$ is not satisfied are also considered. In particular, it is shown for the Goldstone model that at least two bounded solutions exist.
			
            
            
            
          
        
      @article{TMF_1978_34_1_a1,
     author = {I. V. Volovich},
     title = {Classical equations of {Euclidean} field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {15--22},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a1/}
}
                      
                      
                    I. V. Volovich. Classical equations of Euclidean field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 34 (1978) no. 1, pp. 15-22. http://geodesic.mathdoc.fr/item/TMF_1978_34_1_a1/
