Dynamical symmetry and asymptotic scale invariance in ladder models
Teoretičeskaâ i matematičeskaâ fizika, Tome 33 (1977) no. 3, pp. 327-336
Cet article a éte moissonné depuis la source Math-Net.Ru
Class of ladder equations for the absorptive part of the scalar off-shell forward scattering amplitude $A(s,p^2,p'^2)$ is considered. The models possess hidden symmetry $O(4,1)$ and differ from each other by the values of real positive parameter $\nu$. The case $\nu =1$ corresponds to the standard ladder model in scalar theory of $\lambda\varphi^3$ type with the exchange by massless particle. The amplitude depends on the only variable $sm^2/(p^2-m^2)\times(p'^2-m^2)$ (up to the kinematical factor $s^{\nu-2}$, which guarantees its asymptotic scale invariance (in particular, the Bjorken scaling). At the integer positive $\nu$, the solution is expressed in terms of the hypergeometric functions of one variable.
@article{TMF_1977_33_3_a3,
author = {A. I. Oksak and V. E. Rochev},
title = {Dynamical symmetry and asymptotic scale invariance in ladder models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {327--336},
year = {1977},
volume = {33},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1977_33_3_a3/}
}
A. I. Oksak; V. E. Rochev. Dynamical symmetry and asymptotic scale invariance in ladder models. Teoretičeskaâ i matematičeskaâ fizika, Tome 33 (1977) no. 3, pp. 327-336. http://geodesic.mathdoc.fr/item/TMF_1977_33_3_a3/
[1] V. A. Fock, Z. Physik, 98 (1935), 145 | DOI | Zbl
[2] R. E. Cutkosky, Phys. Rev., 96 (1954), 1135 | DOI | MR | Zbl
[3] E. Kyriakopoulos, Phys. Rev., 174 (1968), 1846 | DOI
[4] K. G. Klimenko, V. E. Rochev, TMF, 30 (1977), 191
[5] R. M. Barnett, D. Silverman, Phys. Rev., 8D (1973), 2108 | MR
[6] L. Bertocchi, S. Fubini, M. Tonin, Nuovo Cim., 25 (1962), 626 | DOI | Zbl
[7] N. N. Bogolyubov, A. A. Logunov, I. T. Todorov, Osnovy aksiomaticheskogo podkhoda v kvantovoi teorii polya, «Nauka», 1969 | MR