Dynamical symmetry and asymptotic scale invariance in ladder models
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 33 (1977) no. 3, pp. 327-336
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Class of ladder equations for the absorptive part of the scalar off-shell forward scattering amplitude $A(s,p^2,p'^2)$ is considered. The models possess hidden symmetry $O(4,1)$ and differ from each other by the values of real positive parameter $\nu$. The case $\nu =1$ corresponds to the standard ladder model in scalar theory of $\lambda\varphi^3$ type with the
exchange by massless particle. The amplitude depends on the only variable $sm^2/(p^2-m^2)\times(p'^2-m^2)$ (up to the kinematical factor $s^{\nu-2}$, which guarantees its asymptotic
scale invariance (in particular, the Bjorken scaling). At the integer positive $\nu$, the solution
is expressed in terms of the hypergeometric functions of one variable.
			
            
            
            
          
        
      @article{TMF_1977_33_3_a3,
     author = {A. I. Oksak and V. E. Rochev},
     title = {Dynamical symmetry and asymptotic scale invariance in ladder models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {327--336},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1977_33_3_a3/}
}
                      
                      
                    TY - JOUR AU - A. I. Oksak AU - V. E. Rochev TI - Dynamical symmetry and asymptotic scale invariance in ladder models JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1977 SP - 327 EP - 336 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1977_33_3_a3/ LA - ru ID - TMF_1977_33_3_a3 ER -
A. I. Oksak; V. E. Rochev. Dynamical symmetry and asymptotic scale invariance in ladder models. Teoretičeskaâ i matematičeskaâ fizika, Tome 33 (1977) no. 3, pp. 327-336. http://geodesic.mathdoc.fr/item/TMF_1977_33_3_a3/
