Dimer and Ising models on the Lobachevskii plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 33 (1977) no. 2, pp. 246-271

Voir la notice de l'article provenant de la source Math-Net.Ru

The generating function for close-packet dimer configurations is studied for lattices constructed on the Lobachevskii plane using the Pfaffian method. These lattices are homogeneous under the modular group and the problem of counting dimer configurations is related to the word problem of Dehn. The partition function for the Ising model is found by solving a dimer problem using the prescription given by Fischer. The free energy is given as the solution of a set of algebraic equations and the specific heat has a power-law singularity with critical exponent $\alpha = 1$.
@article{TMF_1977_33_2_a7,
     author = {F. Lund and M. Rasetti and T. Regge},
     title = {Dimer and {Ising} models on the {Lobachevskii} plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {246--271},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1977_33_2_a7/}
}
TY  - JOUR
AU  - F. Lund
AU  - M. Rasetti
AU  - T. Regge
TI  - Dimer and Ising models on the Lobachevskii plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1977
SP  - 246
EP  - 271
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1977_33_2_a7/
LA  - ru
ID  - TMF_1977_33_2_a7
ER  - 
%0 Journal Article
%A F. Lund
%A M. Rasetti
%A T. Regge
%T Dimer and Ising models on the Lobachevskii plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1977
%P 246-271
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1977_33_2_a7/
%G ru
%F TMF_1977_33_2_a7
F. Lund; M. Rasetti; T. Regge. Dimer and Ising models on the Lobachevskii plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 33 (1977) no. 2, pp. 246-271. http://geodesic.mathdoc.fr/item/TMF_1977_33_2_a7/