Dimer and Ising models on the Lobachevskii plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 33 (1977) no. 2, pp. 246-271
Voir la notice de l'article provenant de la source Math-Net.Ru
The generating function for close-packet dimer configurations is studied for lattices
constructed on the Lobachevskii plane using the Pfaffian method. These lattices are
homogeneous under the modular group and the problem of counting dimer configurations
is related to the word problem of Dehn. The partition function for the Ising model
is found by solving a dimer problem using the prescription given by Fischer. The free
energy is given as the solution of a set of algebraic equations and the specific heat
has a power-law singularity with critical exponent $\alpha = 1$.
@article{TMF_1977_33_2_a7,
author = {F. Lund and M. Rasetti and T. Regge},
title = {Dimer and {Ising} models on the {Lobachevskii} plane},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {246--271},
publisher = {mathdoc},
volume = {33},
number = {2},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1977_33_2_a7/}
}
F. Lund; M. Rasetti; T. Regge. Dimer and Ising models on the Lobachevskii plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 33 (1977) no. 2, pp. 246-271. http://geodesic.mathdoc.fr/item/TMF_1977_33_2_a7/