Ray representation of scattering amplitude in the presence of resonances
Teoretičeskaâ i matematičeskaâ fizika, Tome 32 (1977) no. 3, pp. 380-391

Voir la notice de l'article provenant de la source Math-Net.Ru

A new representation of the resonant scattering amplitude over classical paths is found for the problems of scattering at centre-symmetrical potential of a barrier type and in the case of pseudo-crossing of two potential curves. The quasiclassical quantization conditions for the complex poles of the $S$-matrix are derived with the aid of classical paths. It is shown that the most essential contribution of resonances arises when the energy. levels are degenerate. Under certain conditions, the results obtained can be applied for non spherical potentials of a barrier type.
@article{TMF_1977_32_3_a8,
     author = {G. V. Dubrovskiy and M. Yu. Sumetsky},
     title = {Ray representation of scattering amplitude in the presence of resonances},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {380--391},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1977_32_3_a8/}
}
TY  - JOUR
AU  - G. V. Dubrovskiy
AU  - M. Yu. Sumetsky
TI  - Ray representation of scattering amplitude in the presence of resonances
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1977
SP  - 380
EP  - 391
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1977_32_3_a8/
LA  - ru
ID  - TMF_1977_32_3_a8
ER  - 
%0 Journal Article
%A G. V. Dubrovskiy
%A M. Yu. Sumetsky
%T Ray representation of scattering amplitude in the presence of resonances
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1977
%P 380-391
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1977_32_3_a8/
%G ru
%F TMF_1977_32_3_a8
G. V. Dubrovskiy; M. Yu. Sumetsky. Ray representation of scattering amplitude in the presence of resonances. Teoretičeskaâ i matematičeskaâ fizika, Tome 32 (1977) no. 3, pp. 380-391. http://geodesic.mathdoc.fr/item/TMF_1977_32_3_a8/