Symmetry groups of field equations for spin 1/2
Teoretičeskaâ i matematičeskaâ fizika, Tome 32 (1977) no. 3, pp. 360-372 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Methods for constructing the largest (in the S. Lie's sense) continuous symmetry groups of partial differential equations are developed. The equations and the transformations of the symmetry group are not supposed to be linear. The basic conception is that of the group of a differential operator $G_D$. Some important properties of this group are studied and used. For the fields with the spin 1/2 the group $G_D$ is constructed in an explicite form. With the aid of the formulas obtained, the maximal group of symmetry for an arbitrary system of free neutrinos is established. The general form of the conformal invariant interaction is also established and group classification of the Dirac equation with self-interactions is carried out.
@article{TMF_1977_32_3_a6,
     author = {S. A. Vladimirov},
     title = {Symmetry groups of field equations for spin 1/2},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {360--372},
     year = {1977},
     volume = {32},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1977_32_3_a6/}
}
TY  - JOUR
AU  - S. A. Vladimirov
TI  - Symmetry groups of field equations for spin 1/2
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1977
SP  - 360
EP  - 372
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1977_32_3_a6/
LA  - ru
ID  - TMF_1977_32_3_a6
ER  - 
%0 Journal Article
%A S. A. Vladimirov
%T Symmetry groups of field equations for spin 1/2
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1977
%P 360-372
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1977_32_3_a6/
%G ru
%F TMF_1977_32_3_a6
S. A. Vladimirov. Symmetry groups of field equations for spin 1/2. Teoretičeskaâ i matematičeskaâ fizika, Tome 32 (1977) no. 3, pp. 360-372. http://geodesic.mathdoc.fr/item/TMF_1977_32_3_a6/

[1] L. S. Pontryagin, Nepreryvnye gruppy, Gostekhizdat, 1954 | MR

[2] S. Lie, Theorie der Transformationsgruppen, Ab. 1, Teubner, Leipzig, 1888; Ab. 2, 1890; Ab. 3, 1893

[3] S. Lie, Math. Ann., 25 (1885), 71 | DOI | MR

[4] L. V. Ovsyannikov, Gruppovye svoistva differentsialnykh uravnenii, izd. SO AN SSSR, Novosibirsk, 1972 | MR

[5] N. Kh. Ibragimov, Gruppovye svoistva nekotorykh differentsialnykh uravnenii, izd. SO AN SSSR, Novosibirsk, 1967 | MR

[6] N. Kh. Ibragimov, Gruppy Li v nekotorykh voprosakh matematicheskoi fiziki, izd. Novosibirskogo gos. un-ta, Novosibirsk, 1972 | MR

[7] S. A. Vladimirov, DAN USSR, ser. A, 4 (1975), 294

[8] S. A. Vladimirov, DAN USSR, ser. A, 5 (1975), 394

[9] L. V. Ovsyannikov, DAN SSSR, 186 (1969), 3

[10] R. Kurant, Uravneniya s chastnymi proizvodnymi, «Mir», 1964 | MR

[11] B. L. Van der Waerden, Die gruppentheoretische Methode in der Quantenmechanik, Berlin, 1932 | MR

[12] G. Veil, Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, 1947, str. 69

[13] P. A. M. Dirac, Ann. of Math., 37 (1936), 429 | DOI | MR | Zbl

[14] Yu. A. Danilov, TMF, 2 (1970), 297

[15] W. Heisenber, Einfuhrung in die einheitliche Feldtheorie der Elementarteilchen, S. Hirzel Verlag, Stuttgart, 1967

[16] L. V. Ovsyannikov, Lektsii po teorii gruppovykh svoistv differentsialnykh uravnenii, izd. Novosibirskogo gos. un-ta, Novosibirsk, 1966 | MR