Invariant operators for the classical groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 32 (1977) no. 3, pp. 344-347

Voir la notice de l'article provenant de la source Math-Net.Ru

Eigenvalues of the invariant operators of arbitrary order are calculated for all classical groups. The eigenvalues are represented in the form of the polynomials over power sums $S_k$ (cf. the formulas (2.10)–(2.12)).
@article{TMF_1977_32_3_a3,
     author = {V. S. Popov},
     title = {Invariant operators for the classical groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {344--347},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1977_32_3_a3/}
}
TY  - JOUR
AU  - V. S. Popov
TI  - Invariant operators for the classical groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1977
SP  - 344
EP  - 347
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1977_32_3_a3/
LA  - ru
ID  - TMF_1977_32_3_a3
ER  - 
%0 Journal Article
%A V. S. Popov
%T Invariant operators for the classical groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1977
%P 344-347
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1977_32_3_a3/
%G ru
%F TMF_1977_32_3_a3
V. S. Popov. Invariant operators for the classical groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 32 (1977) no. 3, pp. 344-347. http://geodesic.mathdoc.fr/item/TMF_1977_32_3_a3/