Geometrized theories of gravitation
Teoretičeskaâ i matematičeskaâ fizika, Tome 32 (1977) no. 2, pp. 147-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

General properties of geometrized theories of gravitation are considered. Geometrization of the theory is performed only to the extent which is necessarily prescribed by the experiment (the geometrization of the Lagrangian density of matter only). Im the general case, equations of gravitational field and equations of motion of the matter are formulated in different riemannian spaces. Covariant formulation of the energymomentum conservation laws in arbitrary geometrized theory is given. In this formulation of conservation laws, introduction of the noncovariant notion of “pseudotensor” is not required. In completely geometrized theory (e.g., in the Einstein theory) free gravitational waves do not transfer any energy. But if, by the analogy with other physical fields, we require the gravitational waves to transfer energy and momentum, the Lagrangian of the gravitational field should not be geometrized. Properties of one of the variants of quasilinear geometrized theory describing experimental facts are considered. In this theory the fundamental static solution with spherical symmetry possesses the singularity only in the centre of coordinates and as a consequence, thereare no black holes in the theory. The theory makes it possible to formulate a satisfying model of homogeneous nonstationary Universe.
@article{TMF_1977_32_2_a0,
     author = {A. A. Logunov and V. N. Folomeshkin},
     title = {Geometrized theories of gravitation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {147--166},
     year = {1977},
     volume = {32},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1977_32_2_a0/}
}
TY  - JOUR
AU  - A. A. Logunov
AU  - V. N. Folomeshkin
TI  - Geometrized theories of gravitation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1977
SP  - 147
EP  - 166
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1977_32_2_a0/
LA  - ru
ID  - TMF_1977_32_2_a0
ER  - 
%0 Journal Article
%A A. A. Logunov
%A V. N. Folomeshkin
%T Geometrized theories of gravitation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1977
%P 147-166
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1977_32_2_a0/
%G ru
%F TMF_1977_32_2_a0
A. A. Logunov; V. N. Folomeshkin. Geometrized theories of gravitation. Teoretičeskaâ i matematičeskaâ fizika, Tome 32 (1977) no. 2, pp. 147-166. http://geodesic.mathdoc.fr/item/TMF_1977_32_2_a0/

[1] N. I. Lobachevskii, Novye osnovaniya geometrii, izd. Kazanskogo universiteta, 1835

[2] B. Riemann, Nachr. Kön. Gess. Wiss. Göttingen, 13 (1863), 133

[3] C. M. Will, K. Nordtvedt, Astroph. J., 177, 757 ; (1972), 775 | DOI | MR | MR

[4] M. Reinhardt, A. Rosenblum, Phys. Lett., A48 (1974), 115 | DOI | MR

[5] K. S. Thorne, D. L. Lee, A. P. Lightman, Phys. Rev., D7 (1973), 3563

[6] V. N. Folomeshkin, Preprint IHEP 72-92, Serpukhov, 1972

[7] I. Newton, Philosophiae naturalis principia mathematica, London, 1686 | MR

[8] F. W. Bessel, Astr. Nachr., 10 (1833), 98 | DOI

[9] R. V. Eötvös, Math. und Nature Ber. Aus. Hungar., 8 (1890), 65

[10] R. V. Eötvös, D. Pekar, E. Fekete, Ann. Phys., 68 (1922), 11 | DOI

[11] P. G. Roll, R. Krotkov, R. H. Dicke, Ann. Phys., 26 (1964), 442 | DOI | MR | Zbl

[12] V. B. Braginskii, V. I. Panov, ZhETF, 61 (1971), 875

[13] F. Klein, Math. Ann., 4 (1871), 573 ; 4 (1873), 112 | DOI | MR | DOI

[14] H. Poincare, Science and Hypothesis, Paris, 1902 | MR

[15] A. Einstein, Neue Rundschau, January, 1925, Berlin, p. 16

[16] R. H. Dicke, Rev. Mod. Phys., 29 (1957), 363 ; Phys. Rev., 125 (1962), 2163 | DOI | MR | Zbl | DOI | MR | Zbl

[17] A. S. Eddington, Space, Time and Gravitation, New York, 1960 | MR

[18] N. Rosen, Nuovo Cim., 16 (1960), 966 | DOI | Zbl

[19] H. A. Lorentz, Versl. Kön. Akad. Wet. Amsterdam., 23 (1915), 1073 | MR | Zbl

[20] H. A. Lorentz, Versl. Kön. Akad. Wet. Amsterdam., 25 (1916), 468 | MR | Zbl

[21] H. A. Lorentz, Versl. Kön. Akad. Wet. Amsterdam., 25 (1916), 1380 | MR | Zbl

[22] A. Einstein, Ann. Phys., 49 (1916), 769 | DOI | Zbl

[23] A. Einstein, Sitz. d. Preuss. Kön. Akad. Wiss., 2 (1916), 1111

[24] F. Klein, Nachr. Kön. Gess. Göttingen, Math.-Phys. Kl., 1917, 469 ; 1918, 171 ; 1918, 394 | Zbl | Zbl | Zbl

[25] H. Weyl, Ann. Phys., 54 (1917), 117 ; Raum, Zeit, Materie, Springer, Berlin, 1918 | DOI | Zbl | DOI | MR | Zbl

[26] H. Bauer, Phys. Z., 19 (1918), 163 | Zbl

[27] E. Schrödinger, Phys. Z., 19 (1918), 4 | Zbl

[28] M. F. Shirokov, DAN SSSR, 195 (1970), 814 ; Гравитация, Сб., «Наукова думка», Киев, 1972, 321 | Zbl | MR

[29] M. F. Shirokov, L. I. Budko, DAN SSSR, 172 (1967), 326

[30] L. I. Rudakova, DAN SSSR, 197 (1971), 1045

[31] C. M. Pereira, University of Maryland Rep., 73-146, 1973

[32] V. N. Folomeshkin, Intern. J. Theor. Phys., 10 (1974), 145 ; 11 (1974), 387 ; Проблемы теории гравитации и элементарных частиц, No 6, Атомиздат, 1975, 91 | DOI | MR | DOI | MR

[33] T. Levi Civita, Rend. Acad. Lincei, 26 (1917), 381 | Zbl

[34] I. Souriau, Compt. Rend. Acad. Sci., Paris, 245 (1957), 958 | MR | Zbl

[35] S. Mandelstam, Ann. Phys., 19 (1962), 25 | DOI | MR | Zbl

[36] V. N. Folomeshkin, Acta. Phys. Polon., 36 (1969), 439 ; Preprint IHEP 71-120, Serpukhov, 1972; ЯФ, 6 (1967), 1080 | Zbl

[37] A. Quale, Fortschr. Phys., 21 (1973), 265 | DOI

[38] A. S. Eddington, The Mathematical Theory of Relativity, University Press, Cambridge, 1923 | MR | Zbl

[39] N. Rosen, J. Gen. Rel. Grav., 4 (1973), 435 ; Ann. Phys., 84 (1974), 455 | DOI | MR | Zbl | DOI

[40] W. T. Ni, Phys. Rev., D7 (1973), 2880

[41] D. M. Eardley, D. L. Lee, A. R. Lightman, Phys. Rev., D8 (1973), 3398

[42] H. Bondi, Nature, 179 (1957), 1072 | DOI | Zbl

[43] H. Bondi, F. Pirani, I. Robinson, Proc Roy. Soc., A251 (1959), 519 | DOI | MR | Zbl

[44] W. B. Bonnor, Phyl. Trans. Roy. Soc. London, 251 (1959), 233 | DOI | MR | Zbl

[45] H. Bondi, M. van der Burg, A. Metzner, Proc. Roy. Soc., 269 (1962), 21 | DOI | MR | Zbl

[46] R. K. Sachs, Proc. Roy. Soc., 270 (1962), 103 | DOI | MR | Zbl