Dyson–Schwinger equation for a system of two particles in quantum electrodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 32 (1977) no. 1, pp. 44-53
Cet article a éte moissonné depuis la source Math-Net.Ru
The Dyson–Schwinger type representation for the kernel of the Bethe–Salpeter equation is derived. This representation makes it possible to perform the partial summation of irreducible diagrams which is necessary e.g. in the presence of two-particle bound states in quantum electrodynamics. The approximate expression for the kernel taking into account the effects of binding is constructed.
@article{TMF_1977_32_1_a2,
author = {A. Karimkhodzhaev and R. N. Faustov},
title = {Dyson{\textendash}Schwinger equation for a~system of two particles in quantum electrodynamics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {44--53},
year = {1977},
volume = {32},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1977_32_1_a2/}
}
TY - JOUR AU - A. Karimkhodzhaev AU - R. N. Faustov TI - Dyson–Schwinger equation for a system of two particles in quantum electrodynamics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1977 SP - 44 EP - 53 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1977_32_1_a2/ LA - ru ID - TMF_1977_32_1_a2 ER -
A. Karimkhodzhaev; R. N. Faustov. Dyson–Schwinger equation for a system of two particles in quantum electrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 32 (1977) no. 1, pp. 44-53. http://geodesic.mathdoc.fr/item/TMF_1977_32_1_a2/
[1] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, «Nauka», 1973 | MR | Zbl
[2] K. Nishijima, Field Theory and Dispersion relations, New-York–Amsterdam, 1969
[3] J. Schwinger, Proc. Nat. Acad. Sci. USA, 37 (1951), 455 | DOI | MR | Zbl
[4] F. Dyson, Phys. Rev., 75 (1949), 1736 | DOI | MR | Zbl
[5] T. Fulton, P. Martin, Phys. Rev., 95 (1954), 811 | DOI | Zbl
[6] S. Mandelstam, Proc. Roy. Soc., 233A (1955), 248 | DOI | MR | Zbl
[7] R. N. Faustov, Preprint OIYaI 8246, Dubna, 1974
[8] A. Logunov, A. Tavkhelidze, Nuovo Cim., 29 (1963), 380 | DOI | MR
[9] R. N. Faustov, EChAYa, 3 (1972), 238