Estimates of Ursell functions, group functions, and their derivatives
Teoretičeskaâ i matematičeskaâ fizika, Tome 31 (1977) no. 2, pp. 199-213
Cet article a éte moissonné depuis la source Math-Net.Ru
Estimates of the Ursell functions, truncated correlation functions and their derivatives are derived at low activity $z$ for one-component configuration system in the assumption of the smoothness of the interaction potential. As a technical tool, the results of M. Duneau, B. Souillard and D. Jagolnitzer papers [1–4] are used and their derivation is also given.
@article{TMF_1977_31_2_a5,
author = {R. A. Minlos and S. K. Pogosyan},
title = {Estimates of {Ursell} functions, group functions, and their derivatives},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {199--213},
year = {1977},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1977_31_2_a5/}
}
R. A. Minlos; S. K. Pogosyan. Estimates of Ursell functions, group functions, and their derivatives. Teoretičeskaâ i matematičeskaâ fizika, Tome 31 (1977) no. 2, pp. 199-213. http://geodesic.mathdoc.fr/item/TMF_1977_31_2_a5/
[1] M. Duneau, D. Jagolnitzer, B. Souillard, Commun. Math. Phys., 31 (1973), 191 | DOI | MR | Zbl
[2] M. Duneau, D. Jagolnitzer, B. Souillard, Commun. Math. Phys., 35 (1974), 307 | DOI | MR
[3] M. Duneau, D. Jagolnitzer, B. Souillard, J. Math. Phys., 16 (1975), 1662 | DOI | MR
[4] M. Duneau, B. Souillard, Commun. Math. Phys., 47 (1976), 155 | DOI | MR
[5] D. Ryuel, Statisticheskaya mekhanika. Strogie rezultaty, «Mir», 1971
[6] Dzh. Riordan, Vvedenie v kombinatornyi analiz, IL, 1963
[7] R. A. Minlos, UMN, 23 (1968), 139 | MR