Complete sets of observables on the sphere in four-dimensional Euclidean space
Teoretičeskaâ i matematičeskaâ fizika, Tome 31 (1977) no. 2, pp. 275-282
Cet article a éte moissonné depuis la source Math-Net.Ru
Starting from the group-theoretical considerations, all possible total sets of observables on the sphere in the four-dimensional Euclidean space are found. It is shown that there are six non-equivalent total sets of observables and the most general set is connected with the elliptical coordinate system on the sphere.
@article{TMF_1977_31_2_a15,
author = {I. Lukach},
title = {Complete sets of observables on the sphere in four-dimensional {Euclidean} space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {275--282},
year = {1977},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1977_31_2_a15/}
}
I. Lukach. Complete sets of observables on the sphere in four-dimensional Euclidean space. Teoretičeskaâ i matematičeskaâ fizika, Tome 31 (1977) no. 2, pp. 275-282. http://geodesic.mathdoc.fr/item/TMF_1977_31_2_a15/
[1] V. A. Fock, Z. Phys., 98 (1935), 145 | DOI | Zbl
[2] V. Bargmann, Z. Phys., 99 (1936), 576 | DOI | Zbl
[3] M. Bander, G. Itzykson, Rev. Mod. Phys., 39, 330 ; (1966), 347 | MR
[4] R. J. Finkelstein, J. Math. Phys., 8 (1967), 443 | DOI
[5] I. A. Malkin, V. I. Manko, YaF, 3 (1966), 372 | MR
[6] V. S. Popov, Fizika vysokikh energii i teoriya elementarnykh chastits, «Naukova dumka», Kiev, 1967, 702 | MR
[7] M. S. Marinov, YaF, 5 (1967), 1321
[8] I. Lukach, TMF, 14 (1973), 366
[9] M. N. Olevskii, Matem. sb., 27 (1950), 379 | MR | Zbl
[10] I. Lukach, Ya. A. Smorodinskii, Soobschenie OIYaI R2-7465, Dubna, 1973
[11] Ya. A. Smorodinskii, I. I. Tugov, ZhETF, 50 (1966), 653 | Zbl