Greatest lower bounds for the degrees of coherence of higher order for one-mode fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 31 (1977) no. 2, pp. 256-259
Voir la notice de l'article provenant de la source Math-Net.Ru
Exact lower bounds for degrees of coherence of arbitrary order of one mode fields
are found as the functions of the mean number of photons. The formulas are obtained
on the basis of which the exact lower bounds of the degrees of $n$-th order coherence
are found as the functions of all degrees of smaller order coherence and mean number
of photons.
@article{TMF_1977_31_2_a12,
author = {B. A. Sotskii and A. D. Stolyarov},
title = {Greatest lower bounds for the degrees of coherence of higher order for one-mode fields},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {256--259},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1977_31_2_a12/}
}
TY - JOUR AU - B. A. Sotskii AU - A. D. Stolyarov TI - Greatest lower bounds for the degrees of coherence of higher order for one-mode fields JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1977 SP - 256 EP - 259 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1977_31_2_a12/ LA - ru ID - TMF_1977_31_2_a12 ER -
%0 Journal Article %A B. A. Sotskii %A A. D. Stolyarov %T Greatest lower bounds for the degrees of coherence of higher order for one-mode fields %J Teoretičeskaâ i matematičeskaâ fizika %D 1977 %P 256-259 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1977_31_2_a12/ %G ru %F TMF_1977_31_2_a12
B. A. Sotskii; A. D. Stolyarov. Greatest lower bounds for the degrees of coherence of higher order for one-mode fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 31 (1977) no. 2, pp. 256-259. http://geodesic.mathdoc.fr/item/TMF_1977_31_2_a12/