Greatest lower bounds for the degrees of coherence of higher order for one-mode fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 31 (1977) no. 2, pp. 256-259

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact lower bounds for degrees of coherence of arbitrary order of one mode fields are found as the functions of the mean number of photons. The formulas are obtained on the basis of which the exact lower bounds of the degrees of $n$-th order coherence are found as the functions of all degrees of smaller order coherence and mean number of photons.
@article{TMF_1977_31_2_a12,
     author = {B. A. Sotskii and A. D. Stolyarov},
     title = {Greatest lower bounds for the degrees of coherence of higher order for one-mode fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {256--259},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1977_31_2_a12/}
}
TY  - JOUR
AU  - B. A. Sotskii
AU  - A. D. Stolyarov
TI  - Greatest lower bounds for the degrees of coherence of higher order for one-mode fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1977
SP  - 256
EP  - 259
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1977_31_2_a12/
LA  - ru
ID  - TMF_1977_31_2_a12
ER  - 
%0 Journal Article
%A B. A. Sotskii
%A A. D. Stolyarov
%T Greatest lower bounds for the degrees of coherence of higher order for one-mode fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1977
%P 256-259
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1977_31_2_a12/
%G ru
%F TMF_1977_31_2_a12
B. A. Sotskii; A. D. Stolyarov. Greatest lower bounds for the degrees of coherence of higher order for one-mode fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 31 (1977) no. 2, pp. 256-259. http://geodesic.mathdoc.fr/item/TMF_1977_31_2_a12/