Integral equations for three particles in the boundary condition model
Teoretičeskaâ i matematičeskaâ fizika, Tome 31 (1977) no. 1, pp. 75-88
Voir la notice de l'article provenant de la source Math-Net.Ru
The Faddeev equations in a model with the two-particle boundary conditions are
reformulated in order to remove the characteristic singularities of the model. The
equations are reduced to a set of one-dimensional integral equations the kernel of
which is defined by another independent set of one-dimensional integral equations.
The equations obtained for three-particle system with the pair interaction in a finite
number of partial states determines the three-particle wave function uniquely.
@article{TMF_1977_31_1_a7,
author = {V. E. Kuz'michev and V. F. Kharchenko},
title = {Integral equations for three particles in the boundary condition model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {75--88},
publisher = {mathdoc},
volume = {31},
number = {1},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1977_31_1_a7/}
}
TY - JOUR AU - V. E. Kuz'michev AU - V. F. Kharchenko TI - Integral equations for three particles in the boundary condition model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1977 SP - 75 EP - 88 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1977_31_1_a7/ LA - ru ID - TMF_1977_31_1_a7 ER -
V. E. Kuz'michev; V. F. Kharchenko. Integral equations for three particles in the boundary condition model. Teoretičeskaâ i matematičeskaâ fizika, Tome 31 (1977) no. 1, pp. 75-88. http://geodesic.mathdoc.fr/item/TMF_1977_31_1_a7/