Generally covariant theories of gauge fields on superspace
Teoretičeskaâ i matematičeskaâ fizika, Tome 31 (1977) no. 1, pp. 12-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Different variants of general covariant theory of superfields with nontrivial torsion and curvature tensors are discussed from the viewpoint of holonomy group. An example of the lagrangian is considered, which is quadratic with respect to the torsion tensor in linear approximation of weak fields with the interaction switched-off and includes free fields with spin two and the Rarita–Schwinger fields with spin 3/2.
@article{TMF_1977_31_1_a1,
     author = {V. P. Akulov and D. V. Volkov and V. A. Soroka},
     title = {Generally covariant theories of gauge fields on superspace},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {12--22},
     year = {1977},
     volume = {31},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1977_31_1_a1/}
}
TY  - JOUR
AU  - V. P. Akulov
AU  - D. V. Volkov
AU  - V. A. Soroka
TI  - Generally covariant theories of gauge fields on superspace
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1977
SP  - 12
EP  - 22
VL  - 31
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1977_31_1_a1/
LA  - ru
ID  - TMF_1977_31_1_a1
ER  - 
%0 Journal Article
%A V. P. Akulov
%A D. V. Volkov
%A V. A. Soroka
%T Generally covariant theories of gauge fields on superspace
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1977
%P 12-22
%V 31
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1977_31_1_a1/
%G ru
%F TMF_1977_31_1_a1
V. P. Akulov; D. V. Volkov; V. A. Soroka. Generally covariant theories of gauge fields on superspace. Teoretičeskaâ i matematičeskaâ fizika, Tome 31 (1977) no. 1, pp. 12-22. http://geodesic.mathdoc.fr/item/TMF_1977_31_1_a1/

[1] Yu. A. Golfand, E. P. Likhtman, Pisma v ZhETF, 13 (1971), 452; Проблемы теоретической физики, Сб., посвященный памяти И. Е. Тамма, «Наука», 1972 | MR

[2] D. V. Volkov, V. P. Akulov, Pisma v ZhETF, 16 (1972), 621; ТМФ, 18 (1974), 39

[3] J. Wess, B. Zumino, Nucl. Phys., B70 (1974), 39 | DOI | MR

[4] J. Wess, B. Zumino, Phys. Lett., B49 (1974), 52 | DOI

[5] A. Salam, J. Strathdee, Nucl. Phys., B76 (1974), 477 | DOI | MR

[6] S. Ferrara, J. Wess, B. Zumino, Phys. Lett., B51 (1974), 239 | DOI

[7] A. Salam, J. Strathdee, Phys. Rev., D11 (1975), 1521 | MR

[8] S. Ferrara, B. Zumino, Nucl. Phys., B79 (1974), 413

[9] A. Salam, J. Strathdee, Phys. Lett., B51 (1974), 353 | DOI | MR

[10] V. I. Ogievetsky, E. Sokatchev, Proceedings of the IVth International Symposium on Nonlocal Field Theories (Alushta, USSR), 1976

[11] D. Z. Freedman, P. van Niewenhuizen, S. Ferrara, Phys. Rev., D13 (1976), 3214 | MR

[12] D. V. Volkov, V. A. Soroka, Pisma v ZhETF, 18 (1973), 529; ТМФ, 20 (1974), 291

[13] R. Arnowitt, P. Nath, B. Zumino, Phys. Lett., 56B (1975), 81 | DOI | MR

[14] R. Arnowitt, P. Nath, Phys. Lett., 56B (1975), 177 | MR

[15] B. Zumino, CERN preprint TH. 2120, 1975 | MR

[16] V. P. Akulov, D. V. Volkov, V. A. Soroka, Pisma v ZhETF, 22 (1975), 396

[17] V. I. Ogievetskii, L. Mezinchesku, UFN, 177 (1975), 637 | DOI | MR

[18] V. I. Ogievetskii, E. Sokachev, Pisma v ZhETF, 23 (1976), 66

[19] T. W. B. Kibble, J. Math. Phys., 2 (1961), 212 | DOI | MR | Zbl

[20] K. Nomidzu, Gruppy Li i differentsialnaya geometriya, IL, 1960 | MR

[21] A. Likhnerovich, Teoriya svyaznostei v tselom i gruppy golonomii, IL, 1960

[22] E. Sokatchev, Nucl. Phys., B99 (1975), 96 | DOI | MR

[23] V. I. Ogievetskii, I. V. Polubarinov, YaF, 4 (1966), 216

[24] V. I. Pakhomov, Matem. zam., 16 (1974), 65–74 | MR | Zbl