Many-particle correlations of fermion clusters in the method of transition density operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 3, pp. 361-369 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Exact wave function of the $N$-fermion system is divided into the parts corresponding to $s$-particle fermion clusters formed by one-particle states of the self-consistent wave function. Transition density operators involving all virtual transitions between the particle and hole clusters are defined. Using these transition operators, the exact two-particle density matrix is found and the equation of motion describing correlation interaction of the clusters is suggested. It is shown that the expression for the energy dispersion derived with the aid of these equations makes it possible to obtain the estimate for particle correlation of the excited state in the Tamm–Dankoff approximation.
@article{TMF_1977_30_3_a7,
     author = {A. V. Luzanov},
     title = {Many-particle correlations of fermion clusters in the method of transition density operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {361--369},
     year = {1977},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1977_30_3_a7/}
}
TY  - JOUR
AU  - A. V. Luzanov
TI  - Many-particle correlations of fermion clusters in the method of transition density operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1977
SP  - 361
EP  - 369
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1977_30_3_a7/
LA  - ru
ID  - TMF_1977_30_3_a7
ER  - 
%0 Journal Article
%A A. V. Luzanov
%T Many-particle correlations of fermion clusters in the method of transition density operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1977
%P 361-369
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1977_30_3_a7/
%G ru
%F TMF_1977_30_3_a7
A. V. Luzanov. Many-particle correlations of fermion clusters in the method of transition density operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 3, pp. 361-369. http://geodesic.mathdoc.fr/item/TMF_1977_30_3_a7/

[1] K. Kumar, Teoriya vozmuschenii i problema mnogikh tel dlya atomnogo yadra, «Mir», 1964

[2] R. Mak-Vini, B. Satklif, Kvantovaya mekhanika molekul, «Mir», 1972

[3] Yu. Yu. Dmitriev, L. N. Labzovskii, Vestn. LGU, ser. fiz., vyp. 1, no. 4, 1971, 86

[4] A. V. Luzanov, TEKh, 9, 723; (1973), 733

[5] A. V. Luzanov, TEKh, 11 (1975), 3

[6] W. Brenig, Nucl. Phys., 4 (1957), 363 | DOI | MR | Zbl

[7] F. Coester, H. Kümmel, Nucl. Phys., 17 (1960), 477 | DOI | MR | Zbl

[8] L. Szasz, Phys. Rev., 126 (1962), 167 | DOI | MR

[9] J. C̆izek, J. Chem. Phys., 45 (1966), 4256 | DOI

[10] O. Sinanogly, Mnogoelektronnaya teoriya atomov, molekul i ikh vzaimodeistvii, «Mir», 1965; T. Shibuya, O. Sinanoglu, J. Math. Phys., 10 (1969), 1032 | DOI

[11] M. G. Veselov, L. N. Labzovskii, Problemy teoreticheskoi fiziki, Vyp. 1. Kvantovaya mekhanika, izd. LGU, 1974, 7 | MR

[12] A. Lein, Teoriya yadra, Atomizdat, 1967

[13] M. M. Mestechkin, TMF, 1 (1968), 287 | MR