Cluster property in a classical canonical ensemble
Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 3, pp. 353-360
Cet article a éte moissonné depuis la source Math-Net.Ru
Correlation functions of canonical ensemble of classical particles are investigated by the method of operator equations in the Banach space. The proof of the cluster property is given for sufficiently small values of the density of particles. Sufficient conditions on potential of the interaction are found. The estimation of the rate of vanishing of correlations is performed for some specific potentials. The results are compared with those for the grand canonical ensemble.
@article{TMF_1977_30_3_a6,
author = {Yu. G. Pogorelov},
title = {Cluster property in a~classical canonical ensemble},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {353--360},
year = {1977},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1977_30_3_a6/}
}
Yu. G. Pogorelov. Cluster property in a classical canonical ensemble. Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 3, pp. 353-360. http://geodesic.mathdoc.fr/item/TMF_1977_30_3_a6/
[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR
[2] D. Ruelle, Ann. Phys., 25 (1963), 109 | DOI | MR
[3] R. A. Minlos, Funkts. analiz, 1 (1967), 60 | MR | Zbl
[4] R. L. Dobrushin, Teoriya veroyatn. i ee primen., 9 (1964), 626 | Zbl
[5] N. N. Bogolyubov, D. Ya. Petrina, B. I. Khatset, TMF, 1 (1969), 251
[6] A. M. Khalfina, Matem. sb., 80 (1969), 3
[7] I. L. Simyatitskii, TMF, 6 (1971), 232
[8] D. Ruelle, Rev. Mod. Phys., 36 (1964), 580 | DOI | MR
[9] R. L. Dobrushin, Teoriya veroyatn. i ee primen., 13 (1968), 201