Cluster property in a~classical canonical ensemble
Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 3, pp. 353-360
Voir la notice de l'article provenant de la source Math-Net.Ru
Correlation functions of canonical ensemble of classical particles are investigated
by the method of operator equations in the Banach space. The proof of the cluster property
is given for sufficiently small values of the density of particles. Sufficient conditions
on potential of the interaction are found. The estimation of the rate of vanishing
of correlations is performed for some specific potentials. The results are compared with
those for the grand canonical ensemble.
@article{TMF_1977_30_3_a6,
author = {Yu. G. Pogorelov},
title = {Cluster property in a~classical canonical ensemble},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {353--360},
publisher = {mathdoc},
volume = {30},
number = {3},
year = {1977},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1977_30_3_a6/}
}
Yu. G. Pogorelov. Cluster property in a~classical canonical ensemble. Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 3, pp. 353-360. http://geodesic.mathdoc.fr/item/TMF_1977_30_3_a6/