Coherent states on lie groups and evolution operator of a system of interacting bosons and fermions
Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 2, pp. 218-227
Cet article a éte moissonné depuis la source Math-Net.Ru
Matrix elements of the evolution operator of boson-fermion system between coherent states are calculated by means of the method of coherent states on the Lie groups. It is shown that the dynamics of a quantized system of interacting bosons and fermions with finite number of the degrees of freedom and three-particle interaction Hamiltonian can be described by means of a certain trajectory in the direct product of the rotation group and the group of border matrices. Differential equation determining this trajectory is derived.
@article{TMF_1977_30_2_a7,
author = {L. F. Novikov},
title = {Coherent states on~lie groups and evolution operator of a~system of~interacting bosons and fermions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {218--227},
year = {1977},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1977_30_2_a7/}
}
TY - JOUR AU - L. F. Novikov TI - Coherent states on lie groups and evolution operator of a system of interacting bosons and fermions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1977 SP - 218 EP - 227 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1977_30_2_a7/ LA - ru ID - TMF_1977_30_2_a7 ER -
L. F. Novikov. Coherent states on lie groups and evolution operator of a system of interacting bosons and fermions. Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 2, pp. 218-227. http://geodesic.mathdoc.fr/item/TMF_1977_30_2_a7/
[1] A. M. Perelomov, Commun. Math. Phys., 26 (1972), 222 | DOI | MR | Zbl
[2] C. Schweber, J. Math. Phys., 3 (1962), 831 | DOI | MR | Zbl
[3] A. A. Kirillov, Elementy teorii predstavlenii, «Nauka», 1972 | MR
[4] N. Ya. Vilenkin, Matem. sb., 75 (117) (1968), 432 | MR | Zbl
[5] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, «Nauka», 1970 | MR | Zbl
[6] B. A. Rozenfeld, Neevklidovy geometrii, GITTL, 1955 | MR
[7] G. Veil, Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, 1950
[8] S. Shveber, G. Bete, F. Gofman, Mezony i polya, t. I, IL, 1957
[9] E. Khenli, V. Tirring, Elementarnaya kvantovaya teoriya polya, IL, 1963
[10] A. I. Akhiezer, V. B. Berestetskii, Kvantovaya elektrodinamika, Fizmatgiz, 1959 | MR