$\pi d$ scattering in the framework of three-particle relativistic equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 2, pp. 204-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three-particle quasipotential equations are applied to the $\pi d$-scattering problem. These equations are written down in the representation of total angular momentum and isospin of a system, taking into account the property of the indistinquishability of nucleons. In the separable model of pair interaction, a system of one-dimensional integral equations is obtained for partial transition matrices. The cross-sections for the elastic pion-deuteron scattering, scattering with the desintegration of the deuteron and charge exchange processes are expressed in terms of these matrices.
@article{TMF_1977_30_2_a6,
     author = {T. I. Kopaleishvili and A. I. Machavariani},
     title = {$\pi d$ scattering in the framework of three-particle relativistic equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {204--217},
     year = {1977},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1977_30_2_a6/}
}
TY  - JOUR
AU  - T. I. Kopaleishvili
AU  - A. I. Machavariani
TI  - $\pi d$ scattering in the framework of three-particle relativistic equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1977
SP  - 204
EP  - 217
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1977_30_2_a6/
LA  - ru
ID  - TMF_1977_30_2_a6
ER  - 
%0 Journal Article
%A T. I. Kopaleishvili
%A A. I. Machavariani
%T $\pi d$ scattering in the framework of three-particle relativistic equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1977
%P 204-217
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1977_30_2_a6/
%G ru
%F TMF_1977_30_2_a6
T. I. Kopaleishvili; A. I. Machavariani. $\pi d$ scattering in the framework of three-particle relativistic equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 2, pp. 204-217. http://geodesic.mathdoc.fr/item/TMF_1977_30_2_a6/

[1] J. Hüfner, Phys. Rep., C21 (1975), 1 | DOI

[2] R. H. Landau, S. C. Phatak, F. Tabakin, Ann. Phys., 78 (1973), 299 | DOI

[3] E. Kujavaski, G. A. Miller, Phys. Rev., C9 (1974), 1205 ; G. A. Miller, Phys. Rev., C10 (1974), 1242; C. Schmit, J. P. Dedorder, J. P. Maillet, Nucl. Phys., A239 (1975), 445 | DOI

[4] T. I. Kopaleishvili, A. I. Machavariani, Soobscheniya OIYaI R2-8872, Dubna, 1975

[5] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cim., 29 (1963), 380 | DOI | MR

[6] D. Ts. Stoyanov, A. N. Tavkhelidze, Phys. Lett., 13 (1964), 76 ; V. P. Shelest, D. Ts. Stoyanov, Phys. Lett., 13 (1964), 253 ; А. Н. Квинихидзе, Д. Ц. Стоянов, ТМФ, 3 (1970), 332 | DOI | MR | DOI | MR

[7] V. A. Alessandrini, R. L. Omnes, Phys. Rev., 139 (1965), 167 ; R. Blankenbecler, R. Sugar, Phys. Rev., 142 (1966), 1051 ; D. Z. Freedman, C. Lovelace, J. M. Namyslowski, Nuovo Cim., 43 (1966), A258 ; A. Ahmadzadeh, J. A. Tjon, Phys. Rev., 147 (1966), 147 | DOI | MR | DOI | MR | DOI | DOI

[8] A. N. Kvinikhidze, D. Ts. Stoyanov, TMF, 11 (1972), 23 ; 16 (1973), 42

[9] V. M. Vinogradov, TMF, 8 (1971), 343 ; 10 (1972), 338 ; 12 (1972), 29 ; А. А. Архипов, В. И. Саврин, ТМФ, 16 (1973), 328 ; 19 (1974), 310

[10] T. I. Kopaleishvili, A. I. Machavariani, Preprint ITF-74-118R, Kiev, 1974

[11] R. H. Landau, F. Tabakin, Phys. Rev., D5 (1972), 2746

[12] J. T. Londergan, E. J. Moniz, Phys. Lett., 45B (1973), 195 ; J. T. Londergan, K. V. McVoy, E. J. Moniz, Ann. Phys., 86 (1974), 147 | DOI | DOI

[13] R. M. Woloshyn, E. J. Honiz, R. Aaron, Preprint MIT, 497, 1975

[14] V. B. Mandelzweig, H. Garcilazo, J. M. Eisenberg, Nucl. Phys., A256 (1976), 461 | DOI

[15] A. W. Thomas, Nucl. Phys., A258 (1976), 417 | DOI