Feynman path integrals on~nonlinear phase space
Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 2, pp. 159-167

Voir la notice de l'article provenant de la source Math-Net.Ru

Definition of Feynman continual integral in Hamiltonian form on cotangential fibering of the Riemann space $M$ is given. Representation of the solution of parabolic type equation on $M$ in the form of the continual integral is established. It is shown that at the Feynman quantization (when operators are put into correspondence to functionals by means of continual integral) function of the functional of the form $\int\limits_0^1 Hd\sigma$ corresponds to the function of the operator $\hat H$. Extension of this result to the case of functions. of noncommuting operators is given.
@article{TMF_1977_30_2_a1,
     author = {A. L. Alimov},
     title = {Feynman path integrals on~nonlinear phase space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {159--167},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1977_30_2_a1/}
}
TY  - JOUR
AU  - A. L. Alimov
TI  - Feynman path integrals on~nonlinear phase space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1977
SP  - 159
EP  - 167
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1977_30_2_a1/
LA  - ru
ID  - TMF_1977_30_2_a1
ER  - 
%0 Journal Article
%A A. L. Alimov
%T Feynman path integrals on~nonlinear phase space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1977
%P 159-167
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1977_30_2_a1/
%G ru
%F TMF_1977_30_2_a1
A. L. Alimov. Feynman path integrals on~nonlinear phase space. Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 2, pp. 159-167. http://geodesic.mathdoc.fr/item/TMF_1977_30_2_a1/