On manifolds of phase coexistence
Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 1, pp. 40-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using a theorem on convex functions due to Israel, it is shown that a point of coexistence of $n+1$ phases cannot be isolated in the space of interactions, but lies on some “infinite dimensional manifold”.
@article{TMF_1977_30_1_a5,
     author = {D. Ruelle},
     title = {On manifolds of~phase coexistence},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {40--47},
     year = {1977},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1977_30_1_a5/}
}
TY  - JOUR
AU  - D. Ruelle
TI  - On manifolds of phase coexistence
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1977
SP  - 40
EP  - 47
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1977_30_1_a5/
LA  - ru
ID  - TMF_1977_30_1_a5
ER  - 
%0 Journal Article
%A D. Ruelle
%T On manifolds of phase coexistence
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1977
%P 40-47
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1977_30_1_a5/
%G ru
%F TMF_1977_30_1_a5
D. Ruelle. On manifolds of phase coexistence. Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 1, pp. 40-47. http://geodesic.mathdoc.fr/item/TMF_1977_30_1_a5/

[1] R. B. Israel, Commun. Math. Phys., 43 (1975), 59 | DOI | MR | Zbl

[2] S. A. Pirogov, Ya. G. Sinai, Funkts. analiz i ego prilozh., 8:1 (1974), 25 | MR

[3] S. A. Pirogov, Izv. AN SSSR, ser. matem., 39:3 (1975), 1404 | MR

[4] S. A. Pirogov, Ya. G. Sinai, TMF, 25 (1975), 358 ; 26 (1976), 61 | MR | MR

[5] M. Cassandro, A. da Fano, E. Olivieri, Commun. Math. Phys., 44 (1975), 45 | DOI | MR

[6] D. Ryuel, Statisticheskaya mekhanika. Strogie rezultaty, «Mir», 1971

[7] R. B. Griffiths, D. Ruelle, Commun. Math. Phys., 23 (1971), 169 | DOI | MR