On manifolds of phase coexistence
Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 1, pp. 40-47
Cet article a éte moissonné depuis la source Math-Net.Ru
Using a theorem on convex functions due to Israel, it is shown that a point of coexistence of $n+1$ phases cannot be isolated in the space of interactions, but lies on some “infinite dimensional manifold”.
@article{TMF_1977_30_1_a5,
author = {D. Ruelle},
title = {On manifolds of~phase coexistence},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {40--47},
year = {1977},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1977_30_1_a5/}
}
D. Ruelle. On manifolds of phase coexistence. Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 1, pp. 40-47. http://geodesic.mathdoc.fr/item/TMF_1977_30_1_a5/
[1] R. B. Israel, Commun. Math. Phys., 43 (1975), 59 | DOI | MR | Zbl
[2] S. A. Pirogov, Ya. G. Sinai, Funkts. analiz i ego prilozh., 8:1 (1974), 25 | MR
[3] S. A. Pirogov, Izv. AN SSSR, ser. matem., 39:3 (1975), 1404 | MR
[4] S. A. Pirogov, Ya. G. Sinai, TMF, 25 (1975), 358 ; 26 (1976), 61 | MR | MR
[5] M. Cassandro, A. da Fano, E. Olivieri, Commun. Math. Phys., 44 (1975), 45 | DOI | MR
[6] D. Ryuel, Statisticheskaya mekhanika. Strogie rezultaty, «Mir», 1971
[7] R. B. Griffiths, D. Ruelle, Commun. Math. Phys., 23 (1971), 169 | DOI | MR