Application of an improved self-consistent field method for molecular systems in the representation of basis expansions
Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 1, pp. 123-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Wave functions of states of electron system are represented in the form of the sum of binary products of the many-electron coordinate functions by the many-electron spin functions. Mean energy of arbitrary state is calculated using these functions and the generalized equations of self-consistent field are obtained by means of varying this energy. Molecular orbitals are represented as the expansions over symmetrised base functions. Equations are expressed in the representation of base expansions. The coordinate genealogical coefficients necessary for the calculations are evaluated for the group $O(T_d)$ and tabulated.
@article{TMF_1977_30_1_a13,
     author = {S. E. Krestnikov},
     title = {Application of an improved self-consistent field method for molecular systems in the representation of basis expansions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {123--132},
     year = {1977},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1977_30_1_a13/}
}
TY  - JOUR
AU  - S. E. Krestnikov
TI  - Application of an improved self-consistent field method for molecular systems in the representation of basis expansions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1977
SP  - 123
EP  - 132
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1977_30_1_a13/
LA  - ru
ID  - TMF_1977_30_1_a13
ER  - 
%0 Journal Article
%A S. E. Krestnikov
%T Application of an improved self-consistent field method for molecular systems in the representation of basis expansions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1977
%P 123-132
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1977_30_1_a13/
%G ru
%F TMF_1977_30_1_a13
S. E. Krestnikov. Application of an improved self-consistent field method for molecular systems in the representation of basis expansions. Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 1, pp. 123-132. http://geodesic.mathdoc.fr/item/TMF_1977_30_1_a13/

[1] C. C. J. Roothaan, Rev. Mod. Phys., 23 (1951), 69 ; 32 (1960), 179 | DOI | Zbl | DOI | MR

[2] R. MsWeeny, Proc. Roy. Soc., A241 (1957), 239

[3] R. Lefebvre, J. Chim. Phys., 54 (1957), 168

[4] S. Huzinaga, Phys. Rev., 120 (1960), 866 | DOI | MR | Zbl

[5] A. A. Kiselev, Vestn. LGU, ser. fiz.-khim., 22 (1962), 5 | Zbl

[6] C. C. J. Roothaan, P. S. Bagus, Methods in Computational Physics, vol. 2, New York, 1963

[7] P. O'D. Offenhartz, J. Amer. Chem. Soc., 91 (1969), 5699 | DOI

[8] J. W. Richardson, Th. F. Soules, D. M. Vaught, R. R. Powell, Phys. Rev., B4 (1971), 1721 | DOI

[9] P. O. Löwdin, Phys. Rev., 97 (1955), 1509 | DOI | MR | Zbl

[10] M. Dyuar, Teoriya molekulyarnykh orbitalei v organicheskoi khimii, «Mir», 1972

[11] I. G. Kaplan, Simmetriya mnogoelektronnykh sistem, «Nauka», 1969 | MR | Zbl

[12] I. G. Kaplan, ZhETF, 41, 560 ; (1961), 790 | Zbl

[13] A. A. Levin, Vvedenie v kvantovuyu khimiyu tverdogo tela, «Khimiya», 1974

[14] H. A. Jahn, Proc. Roy. Soc., A201 (1950), 516 | DOI | Zbl

[15] H. A. Jahn, Proc. Roy. Soc., A205 (1951), 192 | DOI | Zbl

[16] H. A. Jahn, H. van Wieringen, Proc. Roy. Soc., A209 (1951), 502 | DOI | Zbl

[17] B. H. Flowers, Proc. Roy. Soc., A212 (1952), 248 | DOI | Zbl

[18] J. S. Griffith, The Irreducible Tensor Method for Molecular Symmetry Groups, Englewood Cliffs, New Jersey, 1962

[19] S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition - Metal Jons in Crystals, Acad. Press, New York, 1970

[20] G. Veil, Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, 1947

[21] S. E. Krestnikov, Dep. VINITI, No 2603-76 DEP, 1976