On admissible forms of canonical mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 1, pp. 6-11
Cet article a éte moissonné depuis la source Math-Net.Ru
General solution has been derived for the functional $c$-number equation which determines all admissible realisations of yarious mechanics with associative (but not necessary realisable by operators) law of multiplication of the observables. The general solution includes the algebras of observables for the classical and for the quantum mechanics. In addition, the solution includes one new algebra which corresponds formally to purely imaginary value fo the Planck constant. The mathematical difficulties of treating the new algebra are discussed.
@article{TMF_1977_30_1_a1,
author = {Yu. M. Shirokov},
title = {On admissible forms of canonical mechanics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {6--11},
year = {1977},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1977_30_1_a1/}
}
Yu. M. Shirokov. On admissible forms of canonical mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 30 (1977) no. 1, pp. 6-11. http://geodesic.mathdoc.fr/item/TMF_1977_30_1_a1/
[1] E. Grgin, A. Petersen, J. Math. Phys., 15 (1974), 764 | DOI | MR | Zbl
[2] Yu. M. Shirokov, TMF, 25 (1975), 307 | Zbl
[3] Yu. M. Shirokov, TMF, 28 (1976), 308 | MR | Zbl
[4] T. Jordan, E. Sudarshan, Rev. Mod. Phys., 33 (1961), 515 | DOI | MR
[5] C. Mehta, J. Math. Phys., 5 (1964), 677 | DOI | MR | Zbl
[6] J. Moyal, Proc. Cambr. Phil. Soc., 45 (1949), 99 | DOI | MR | Zbl