Quantum theory of channeling: Generalized transport equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 3, pp. 376-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of channeling is formulated in the framework of nonequilibrium statistical mechanics. A statistical operator is constructed for a nonequilibrium system consisting of a thermal bath and fast charged particles (below-barrier and above-barrier levels) with allowance for the transport of energy and particles. Generalized transport equations are obtained by averaging the equations of motion for the operators with respect to this nonequilibrium distribution. The formalism is applied to the analysis of dechanneling, the energy losses of particles, and the electron diffusion coefficient.
@article{TMF_1976_29_3_a8,
     author = {D. N. Zubarev and Yu. A. Kashlev},
     title = {Quantum theory of channeling: {Generalized} transport equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {376--387},
     year = {1976},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a8/}
}
TY  - JOUR
AU  - D. N. Zubarev
AU  - Yu. A. Kashlev
TI  - Quantum theory of channeling: Generalized transport equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 376
EP  - 387
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a8/
LA  - ru
ID  - TMF_1976_29_3_a8
ER  - 
%0 Journal Article
%A D. N. Zubarev
%A Yu. A. Kashlev
%T Quantum theory of channeling: Generalized transport equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 376-387
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a8/
%G ru
%F TMF_1976_29_3_a8
D. N. Zubarev; Yu. A. Kashlev. Quantum theory of channeling: Generalized transport equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 3, pp. 376-387. http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a8/

[1] J. Lindhard, Mat.-Fus. Medd. Dan. Vid. Selsk., 34:14 (1965)

[2] J. H. Barrett, B. R. Appleton, T. S. Noggle, S. D. Moak, J. A. Biggerstaff, S. Datz, R. Behrisch, Atomic Collisions in Solids, 2, N. Y., 1975, 645 | DOI | MR

[3] J. H. Barrett, Atomic Collisions in Solids, 2, N. Y., 1975, 841 | DOI | MR

[4] D. N. Zubarev, DAN SSSR, 140 (1961), 92 ; 164 (1965), 573 | Zbl

[5] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, «Nauka», 1971

[6] R. Kubo, J. Phys. Soc. Japan, 12 (1957), 570 | DOI | MR | Zbl

[7] R. Kubo, Termodinamika neobratimykh protsessov, Sb., IL, 1962

[8] R. S. Nelson, M. W. Thompson, Phil. Mag., 8 (1963), 1677 | DOI

[9] J. U. Andersen, E. Uggerhøj, Canad. J. Phys., 46 (1967), 517 | DOI

[10] Yu. Kagan, Yu. V. Kononets, ZhETF, 58 (1970), 226; 64 (1973), 1042; 66 (1974), 1693

[11] K. Dettmann, Atomic Collisions in Solids, 2, N. Y., 1975, 3 | DOI

[12] M. A. Kumakhov, V. A. Muralev, V. A. Simonov, Tr. IV Vsesoyuznogo soveschaniya po fizike vzaimodeistviya zaryazhennykh chastits s monokristallami, MGU, 1973

[13] T. Yamamoto, J. Chem. Phys., 33 (1960), 281 | DOI | MR

[14] S. de Groot, P. Mazur, Neravnovesnaya termodinamika, «Mir», 1965

[15] G. J. Kutcher, M. H. Mittleman, Phys. Rev., A11 (1975), 125 | DOI

[16] I. Prigogine, T. A. Bak, J. Chem. Phys., 31 (1959), 1368 | DOI | MR

[17] M. Kats, Neskolko veroyatnostnykh zadach fiziki i matematiki, «Mir», 1965 | Zbl

[18] J. A. Sussmann, Ann. Phys., 6 (1971), 135 | DOI

[19] D. Pains, Elementarnye vozbuzhdeniya v tverdykh telakh, «Mir», 1965

[20] Yu. A. Kashlev, FMM, 23 (1967), 973

[21] M. Kitagawa, Y. H. Ohtsuki, Phys. Rev., B9 (1974), 4719 | DOI