New expressions for the invariant operators of the unitary groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 3, pp. 357-369 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The invariant operators (or Casimir operators) for the unitary groups $U(n)$ and $SU(n)$ are considered. The eigenvalues of these operators for an arbitrary irreducible representation are expanded with respect to standard power sums $S_k$ defined by Eq. (2.8). For the coefficients $\beta_p(\nu)$ of this expansion the expressions (3.9), (3,17), and (3.18) are obtained; they holed for arbitrary rank $n-1$ of the group and arbitrary order $p$ of the invariant operator. These expressions considerably simplify the calculation of the eigenvalues of the invariant operators (especially for large $p$), which is demonstrated by a number of examples. The connection between the operators (2.1) and (5.3), which correspond to different ways of contracting indices, is found.
@article{TMF_1976_29_3_a6,
     author = {V. S. Popov},
     title = {New expressions for the invariant operators of the unitary groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {357--369},
     year = {1976},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a6/}
}
TY  - JOUR
AU  - V. S. Popov
TI  - New expressions for the invariant operators of the unitary groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 357
EP  - 369
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a6/
LA  - ru
ID  - TMF_1976_29_3_a6
ER  - 
%0 Journal Article
%A V. S. Popov
%T New expressions for the invariant operators of the unitary groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 357-369
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a6/
%G ru
%F TMF_1976_29_3_a6
V. S. Popov. New expressions for the invariant operators of the unitary groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 3, pp. 357-369. http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a6/

[1] G. Racah, Group Theory and Spectroscopy. Lecture notes, Institute for Advanced Study, Princeton, 1951

[2] B. G. Wybourne, Symmetry Principles and Atomic Spectroscopy, Wiley-Interscience, N. Y., 1970 | MR

[3] B. Dzhadd, B. Vaiborn, Teoriya slozhnykh atomnykh spektrov, «Mir», 1973

[4] J. D. Louck, H. W. Galbraith, Rev. Mod. Phys., 44 (1972), 540 | DOI | MR

[5] R. E. Behrends, J. Dreitlein, C. Fronsdal, B. W. Lee, Rev. Mod. Phys., 34 (1962), 5 | MR

[6] Teoriya grupp i elementarnye chastitsy, «Mir», 1967

[7] L. Michel, Application of Group Theory to Quantum Physics, Lecture Notes in Physics, 6, Springer, Berlin, 1970 ; Simmetriya v kvantovoi fizike, Sb., «Mir», 1974 | MR

[8] H. Casimir, Proc. Niderl. Akad. van Wet., 34 (1931), 844 | Zbl

[9] I. M. Gelfand, Matem. sb., 26 (1950), 103 | MR | Zbl

[10] F. A. Berezin, Tr. Mosk. matem. ob-va, 6 (1957), 371 | MR | Zbl

[11] M. Umezawa, Nucl. Phys., 57 (1964), 65 | DOI | MR | Zbl

[12] M. Micu, Nucl. Phys., 60 (1964), 353 | DOI | MR | Zbl

[13] A. M. Perelomov, V. S. Popov, Pisma ZhETF, 1 (1965), 15

[14] A. M. Perelomov, V. S. Popov, YaF, 3, 924 ; (1966), 1127 | MR | MR

[15] V. S. Popov, A. M. Perelomov, YaF, 5 (1967), 693

[16] V. S. Popov, A. M. Perelomov, YaF, 7 (1968), 460

[17] A. M. Perelomov, V. S. Popov, Izv. AN SSSR, ser. matem., 32 (1968), 1368 | MR | Zbl

[18] A. N. Leznov, I. A. Malkin, V. I. Manko, Preprint FIAN-139, 1972

[19] C. Itzykson, M. Nauenberg, Rev. Mod. Phys., 38 (1966), 95 | DOI | MR | Zbl

[20] J. D. Louck, Amer. J. Phys., 38 (1970), 3 | DOI | MR

[21] S. Okubo, J. Math. Phys., 16 (1975), 528 | DOI | MR | Zbl

[22] J. D. Louck, L. C. Biedenharn, J. Math. Phys., 11 (1970), 2368 | DOI | MR | Zbl

[23] D. Poiya, Matematika i pravdopodobnye rassuzhdeniya, «Nauka», 1975 | MR

[24] G. Beitman, A. Erdeii, Vysshie transtsendentnye funktsii, t. 3, «Nauka», 1967 | MR

[25] K. Chandrasekkharan, Arifmeticheskie funktsii, «Nauka», 1975 | MR