Asymptotic expansions of generalized functions with singularities on the light cone
Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 3, pp. 336-346
Cet article a éte moissonné depuis la source Math-Net.Ru
For generalized functions in $S'(R^m)$ an investigation is made of the asymptotic (as $t\to\infty$) expansion $$\displaystyle F(x)e^{itnx}\sim\sum_{k=0}^\infty C_k(x,n)\psi_k(t,n)$$ as a function of the direction defined by a vector $n\in R^m$. Abelian theorems are proved for Lorentz invariant generalized functions and for generalized functions that have the properties characteristic of the electromagnetic form factors of deep inelastic scattering of electrons on protons. Asymptotic expansions are obtained for the generalized functions $(x^2\pm i0)^\lambda$, $\theta(\pm x_0)(x^2)_+^\lambda$, $(x^2)_-^\lambda$, $(-x^2\pm i0x_0)^\lambda$.
@article{TMF_1976_29_3_a4,
author = {V. A. Smirnov},
title = {Asymptotic expansions of generalized functions with singularities on the light cone},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {336--346},
year = {1976},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a4/}
}
V. A. Smirnov. Asymptotic expansions of generalized functions with singularities on the light cone. Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 3, pp. 336-346. http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a4/
[1] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966 | MR
[2] Yu. A. Brychkov, Yu. M. Shirokov, TMF, 4 (1970), 301 ; Ю. А. Брычков, ТМФ, 5 (1970), 98 ; 15 (1973), 375 | Zbl | Zbl
[3] B. I. Zavyalov, TMF, 16 (1973), 61 ; 17 (1973), 178 ; 19 (1974), 163
[4] M. Magg, Commun. Math. Phys., 38 (1974), 225 | DOI | MR
[5] J. Kühn, Nuovo Cim., 23A (1974), 420 | DOI | MR
[6] H. Leutwyler, Lect. Notes. Phys., 17 (1973), 245 | DOI
[7] F. Schwarz, J. Math. Phys., 13 (1972), 1621 ; Fortschr. Physik, 21 (1973), 839 | DOI | MR | Zbl | DOI
[8] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, vyp. I, Fizmatgiz, 1958 | MR