Random walks without self-intersection
Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 3, pp. 424-429
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of random walks of a particle without self-intersections in $n$-dimensional Euclidean space. A closed integral equation is obtained for the transformed distribution function for the probability of the distance between the ends of the path of the random walk.
@article{TMF_1976_29_3_a14,
author = {V. I. Alkhimov},
title = {Random walks without self-intersection},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {424--429},
year = {1976},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a14/}
}
V. I. Alkhimov. Random walks without self-intersection. Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 3, pp. 424-429. http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a14/
[1] S. Chandrasekar, Stokhasticheskie problemy v fizike i astronomii, IL, 1947
[2] P. Flori, Statisticheskaya mekhanika tsepnykh molekul, «Mir», 1971
[3] V. I. Alkhimov, Dissertatsiya, MFTI, 1970