Random walks without self-intersection
Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 3, pp. 424-429

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of random walks of a particle without self-intersections in $n$-dimensional Euclidean space. A closed integral equation is obtained for the transformed distribution function for the probability of the distance between the ends of the path of the random walk.
@article{TMF_1976_29_3_a14,
     author = {V. I. Alkhimov},
     title = {Random walks without self-intersection},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {424--429},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a14/}
}
TY  - JOUR
AU  - V. I. Alkhimov
TI  - Random walks without self-intersection
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 424
EP  - 429
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a14/
LA  - ru
ID  - TMF_1976_29_3_a14
ER  - 
%0 Journal Article
%A V. I. Alkhimov
%T Random walks without self-intersection
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 424-429
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a14/
%G ru
%F TMF_1976_29_3_a14
V. I. Alkhimov. Random walks without self-intersection. Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 3, pp. 424-429. http://geodesic.mathdoc.fr/item/TMF_1976_29_3_a14/