Integral equations and relations for Coulomb spheroidal functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 2, pp. 235-243
Cet article a éte moissonné depuis la source Math-Net.Ru
The connection between the one- and two-center Coulomb problems makes it possible to construct integral equations for the Coulomb spheroidal functions (CSFs). For the onecenter Coulomb problem in spheroidal coordinates the equations go over into integral relations whose coefficients can be expressed in terms of the limiting values of the angular one-center CSFs at the points $\pm1$.
@article{TMF_1976_29_2_a9,
author = {D. I. Abramov and I. V. Komarov},
title = {Integral equations and relations for {Coulomb} spheroidal functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {235--243},
year = {1976},
volume = {29},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_29_2_a9/}
}
D. I. Abramov; I. V. Komarov. Integral equations and relations for Coulomb spheroidal functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 2, pp. 235-243. http://geodesic.mathdoc.fr/item/TMF_1976_29_2_a9/
[2] K. Flammer, Tablitsy volnovykh sferoidalnykh funktsii, Izd. VTs AN SSSR, 1962 | MR
[3] F. M. Mors, G. Feshbakh, Metody teoreticheskoi fiziki, t. 2, IL, 1960
[4] P. C. McKinney, J. Chem. Phys., 42 (1965), 3537 | DOI
[5] Yu. N. Demkov, Pisma v ZhETF, 7 (1968), 101
[6] A. I. Baz, Ya. B. Zeldovich, A. M. Perelomov, Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, «Nauka», 1971 | Zbl
[7] M. K. Razmakhnin, V. P. Yakovlev, Funktsii s dvoinoi ortogonalnostyu v radioelektronike i optike, 1971
[8] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, «Nauka», 1974 | MR
[9] D. I. Abramov, I. V. Komarov, Tezisy VI VKEAS, Tbilisi, 1975, 253 | Zbl
[10] C. M. Li, J. Math. Phys., 15 (1974), 570 | DOI