Stochastic transition in a~classical nonlinear dynamical system: A~Lennard--Jones chain
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 2, pp. 205-212
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we present and discuss the results of various computer experiments
performed on a Lennard–Jones chain for a number of particles $N$ ranging from three to one thousand. These experiments indicate that this system exhibits a transition from near integrable to stochastic behavior, as one goes from low specific energies to higher ones. More precisely, it is possible to characterize two values of the energy per particle, $E_{c_1}$ and $E_{c_2}$ , such that, for energies lower than $E_{c_1}$, the overwhelming majority of initial conditions lead to ordered motion and, for energies higher than $E_{c_2}$, the overwhelming
majority of initial conditions lead to stochastic motion. The most interesting conclusion of these computations is that the above mentioned critical values seem to be roughly independent of the number of degrees of freedom, if this number is sufficiently large (greater than ten). On the contrary, when $N$ is small (from three to ten), $E_{c_1}$ and $E_{c_2}$ are strongly dependent on both the number of degrees of freedom and the initial conditions.
			
            
            
            
          
        
      @article{TMF_1976_29_2_a6,
     author = {E. Diana and L. Galgani and M. Casartelli and G. Casati and A. Scotti},
     title = {Stochastic transition in a~classical nonlinear dynamical system: {A~Lennard--Jones} chain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {205--212},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_29_2_a6/}
}
                      
                      
                    TY - JOUR AU - E. Diana AU - L. Galgani AU - M. Casartelli AU - G. Casati AU - A. Scotti TI - Stochastic transition in a~classical nonlinear dynamical system: A~Lennard--Jones chain JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1976 SP - 205 EP - 212 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1976_29_2_a6/ LA - ru ID - TMF_1976_29_2_a6 ER -
%0 Journal Article %A E. Diana %A L. Galgani %A M. Casartelli %A G. Casati %A A. Scotti %T Stochastic transition in a~classical nonlinear dynamical system: A~Lennard--Jones chain %J Teoretičeskaâ i matematičeskaâ fizika %D 1976 %P 205-212 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1976_29_2_a6/ %G ru %F TMF_1976_29_2_a6
E. Diana; L. Galgani; M. Casartelli; G. Casati; A. Scotti. Stochastic transition in a~classical nonlinear dynamical system: A~Lennard--Jones chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 2, pp. 205-212. http://geodesic.mathdoc.fr/item/TMF_1976_29_2_a6/
