Stochastic transition in a classical nonlinear dynamical system: A Lennard–Jones chain
Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 2, pp. 205-212
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we present and discuss the results of various computer experiments performed on a Lennard–Jones chain for a number of particles $N$ ranging from three to one thousand. These experiments indicate that this system exhibits a transition from near integrable to stochastic behavior, as one goes from low specific energies to higher ones. More precisely, it is possible to characterize two values of the energy per particle, $E_{c_1}$ and $E_{c_2}$ , such that, for energies lower than $E_{c_1}$, the overwhelming majority of initial conditions lead to ordered motion and, for energies higher than $E_{c_2}$, the overwhelming majority of initial conditions lead to stochastic motion. The most interesting conclusion of these computations is that the above mentioned critical values seem to be roughly independent of the number of degrees of freedom, if this number is sufficiently large (greater than ten). On the contrary, when $N$ is small (from three to ten), $E_{c_1}$ and $E_{c_2}$ are strongly dependent on both the number of degrees of freedom and the initial conditions.
@article{TMF_1976_29_2_a6,
author = {E. Diana and L. Galgani and M. Casartelli and G. Casati and A. Scotti},
title = {Stochastic transition in a~classical nonlinear dynamical system: {A~Lennard{\textendash}Jones} chain},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {205--212},
year = {1976},
volume = {29},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_29_2_a6/}
}
TY - JOUR AU - E. Diana AU - L. Galgani AU - M. Casartelli AU - G. Casati AU - A. Scotti TI - Stochastic transition in a classical nonlinear dynamical system: A Lennard–Jones chain JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1976 SP - 205 EP - 212 VL - 29 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1976_29_2_a6/ LA - ru ID - TMF_1976_29_2_a6 ER -
%0 Journal Article %A E. Diana %A L. Galgani %A M. Casartelli %A G. Casati %A A. Scotti %T Stochastic transition in a classical nonlinear dynamical system: A Lennard–Jones chain %J Teoretičeskaâ i matematičeskaâ fizika %D 1976 %P 205-212 %V 29 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1976_29_2_a6/ %G ru %F TMF_1976_29_2_a6
E. Diana; L. Galgani; M. Casartelli; G. Casati; A. Scotti. Stochastic transition in a classical nonlinear dynamical system: A Lennard–Jones chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 2, pp. 205-212. http://geodesic.mathdoc.fr/item/TMF_1976_29_2_a6/
[1] H. Poincaré, Les méthodes nouvelles de la Mécanique Céleste, Paris, 1892–1899 | MR
[2] M. Hénon, C. Heiles, The Astronomical J., 69 (1964), 73 | DOI | MR
[3] J. Ford, S. D. Stoddard, J. S. Turner, Progr. Theor. Phys., 50 (1973), 1547 | DOI
[4] G. Gasati, F. Ford, Preprint, 1975
[5] B. V. Chirikov, F. J. Izrailev, V. A. Tayursky, Computer Phys. Communs, 5 (1973), 11 | DOI
[6] V. I. Arnold, A. Avez, Ergodic Problems of Classical Mechanics, New York, 1968 | MR
[7] P. Bocchieri, A. Scotti, B. Bearzi, A. Loinger, Phys. Rev., A2 (1970), 2013 | DOI