Additional invariance of the Kemmer–Duffin and Rarita–Schwinger equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 1, pp. 82-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Additional (implicit) symmetry of the Kemmer–Duffin, Rarita–Schwinger, and Dirac equations is established. It is shown that the invariance algebra of the Kemmer–Duffin equation is a 34-dimensional Lie algebra containing the algebra of $SU(3)$ as a subalgebra, and that the Rarita–Schwinger equation is invariant under a 64-dimensional Lie algebra including the subalgebra $O(2,4)$. The explicit form of the operator that reduces the Rarita–Schwinger equation to diagonal form is found and also that of the operator that transforms the Kemmer–Duffin equation into the Tamm–Sakata–Taketani equation. The algebra of the additional invariance of the Dirac and Tamm–Sakata–Taketani equations in the class of differential operators is found.
@article{TMF_1976_29_1_a8,
     author = {A. G. Nikitin and Yu. N. Segeda and W. I. Fushchych},
     title = {Additional invariance of the {Kemmer{\textendash}Duffin} and {Rarita{\textendash}Schwinger} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {82--93},
     year = {1976},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a8/}
}
TY  - JOUR
AU  - A. G. Nikitin
AU  - Yu. N. Segeda
AU  - W. I. Fushchych
TI  - Additional invariance of the Kemmer–Duffin and Rarita–Schwinger equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 82
EP  - 93
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a8/
LA  - ru
ID  - TMF_1976_29_1_a8
ER  - 
%0 Journal Article
%A A. G. Nikitin
%A Yu. N. Segeda
%A W. I. Fushchych
%T Additional invariance of the Kemmer–Duffin and Rarita–Schwinger equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 82-93
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a8/
%G ru
%F TMF_1976_29_1_a8
A. G. Nikitin; Yu. N. Segeda; W. I. Fushchych. Additional invariance of the Kemmer–Duffin and Rarita–Schwinger equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 1, pp. 82-93. http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a8/

[1] V. A. Fok, Z. Phys., 98 (1936), 145 | DOI

[2] J. S. Lomont, Nuovo Cim., 6 (1957), 204 ; L. Gross, J. Math. Phys., 5 (1964), 687 | DOI | DOI | MR | Zbl

[3] V. I. Fuschich, TMF, 7 (1971), 3 ; Lett. Nuovo Cim., 11 (1974), 508 ; Preprint ITP-70-32E, Kiev, 1970 | MR | DOI | Zbl

[4] V. I. Fuschich, DAN SSSR, 229 (1976)

[5] L. V. Ovsyannikov, Gruppovye svoistva differentsialnykh uravnenii, izd. SO AN SSSR, Novosibirsk, 1962 ; Н. Х. Ибрагимов, ДАН СССР, 185 (1969), 1226 | MR

[6] U. Niederer, Helv. Phys. Acta, 45 (1972), 802 ; R. L. Andersson et al., Phys. Rev. Lett., 28 (1972), 988 ; C. P. Boyer, E. G. Kalnins, W. Miller, Jr., J. Math. Phys., 16 (1975), 499 | MR | DOI | MR | DOI | MR | Zbl

[7] N. Kemmer, Proc. Roy. Soc., A173 (1939), 91 ; W. Heitler, Proc. Roy. Irish Acad., A49 (1939), 1 ; R. A. Krajcik, M. M. Nieto, Phys. Rev., D10 (1974), 4049 | DOI | MR | MR | MR

[8] L. M. Garrido, P. Pascual, Nuovo Cim., 12 (1959), 181 | DOI | MR | Zbl

[9] S. A. Bludman, Phys. Rev., 107 (1957), 1163 | DOI | MR

[10] I. E. Tamm, DAN SSSR, 29 (1940), 551 | MR | Zbl

[11] V. I. Fuschich, A. L. Grischenko, A. G. Nikitin, TMF, 8 (1971), 172

[12] A. D. Bryden, Nucl. Phys., 53 (1964), 165 | DOI | MR | Zbl