Representation of the wave function by a functional integral and the quasiclassical approximation in the scattering problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 1, pp. 52-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonstationary wave function $\Psi_k(x, T)$ with initial condition $\Psi_k(x, 0)=\exp(ikx)$ and stationary wave function $\psi_k(x)$ of the scattering problem are represented by functional integrals. This representation is used in the three-dimensional problem of scattering on an arbitrary (not necessarily central) potential to obtain the quasiclassical scattering amplitude and also the quantum corrections to it.
@article{TMF_1976_29_1_a4,
     author = {A. V. Kuzmenko},
     title = {Representation of the wave function by a~functional integral and the quasiclassical approximation in the scattering problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {52--58},
     year = {1976},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a4/}
}
TY  - JOUR
AU  - A. V. Kuzmenko
TI  - Representation of the wave function by a functional integral and the quasiclassical approximation in the scattering problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 52
EP  - 58
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a4/
LA  - ru
ID  - TMF_1976_29_1_a4
ER  - 
%0 Journal Article
%A A. V. Kuzmenko
%T Representation of the wave function by a functional integral and the quasiclassical approximation in the scattering problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 52-58
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a4/
%G ru
%F TMF_1976_29_1_a4
A. V. Kuzmenko. Representation of the wave function by a functional integral and the quasiclassical approximation in the scattering problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 1, pp. 52-58. http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a4/

[1] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, MGU, 1965 | MR

[2] R. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, «Mir», 1968

[3] F. A. Berezin, TMF, 6 (1971), 194 | MR | Zbl

[4] M. A. Lavrentev, L. A. Lyusternik, Osnovy variatsionnogo ischisleniya, t. I, ch. 2, ONTI, 1935 | MR

[5] M. Goldberger, K. Vatson, Teoriya stolknovenii, », 1967

[6] R. Nyuton, Teoriya rasseyaniya voln i chastits, «Mir», 1969 | MR

[7] A. B. Migdal, V. P. Krainov, Priblizhennye metody kvantovoi mekhaniki, «Nauka», 1966 | Zbl