Representation of the wave function by a functional integral and the quasiclassical approximation in the scattering problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 1, pp. 52-58
Cet article a éte moissonné depuis la source Math-Net.Ru
The nonstationary wave function $\Psi_k(x, T)$ with initial condition $\Psi_k(x, 0)=\exp(ikx)$ and stationary wave function $\psi_k(x)$ of the scattering problem are represented by functional integrals. This representation is used in the three-dimensional problem of scattering on an arbitrary (not necessarily central) potential to obtain the quasiclassical scattering amplitude and also the quantum corrections to it.
@article{TMF_1976_29_1_a4,
author = {A. V. Kuzmenko},
title = {Representation of the wave function by a~functional integral and the quasiclassical approximation in the scattering problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {52--58},
year = {1976},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a4/}
}
TY - JOUR AU - A. V. Kuzmenko TI - Representation of the wave function by a functional integral and the quasiclassical approximation in the scattering problem JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1976 SP - 52 EP - 58 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a4/ LA - ru ID - TMF_1976_29_1_a4 ER -
%0 Journal Article %A A. V. Kuzmenko %T Representation of the wave function by a functional integral and the quasiclassical approximation in the scattering problem %J Teoretičeskaâ i matematičeskaâ fizika %D 1976 %P 52-58 %V 29 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a4/ %G ru %F TMF_1976_29_1_a4
A. V. Kuzmenko. Representation of the wave function by a functional integral and the quasiclassical approximation in the scattering problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 1, pp. 52-58. http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a4/
[1] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, MGU, 1965 | MR
[2] R. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, «Mir», 1968
[3] F. A. Berezin, TMF, 6 (1971), 194 | MR | Zbl
[4] M. A. Lavrentev, L. A. Lyusternik, Osnovy variatsionnogo ischisleniya, t. I, ch. 2, ONTI, 1935 | MR
[5] M. Goldberger, K. Vatson, Teoriya stolknovenii, », 1967
[6] R. Nyuton, Teoriya rasseyaniya voln i chastits, «Mir», 1969 | MR
[7] A. B. Migdal, V. P. Krainov, Priblizhennye metody kvantovoi mekhaniki, «Nauka», 1966 | Zbl