Representation of the wave function by a~functional integral and the quasiclassical approximation in the scattering problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 1, pp. 52-58

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonstationary wave function $\Psi_k(x, T)$ with initial condition $\Psi_k(x, 0)=\exp(ikx)$ and stationary wave function $\psi_k(x)$ of the scattering problem are represented by functional integrals. This representation is used in the three-dimensional problem of scattering on an arbitrary (not necessarily central) potential to obtain the quasiclassical scattering amplitude and also the quantum corrections to it.
@article{TMF_1976_29_1_a4,
     author = {A. V. Kuzmenko},
     title = {Representation of the wave function by a~functional integral and the quasiclassical approximation in the scattering problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {52--58},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a4/}
}
TY  - JOUR
AU  - A. V. Kuzmenko
TI  - Representation of the wave function by a~functional integral and the quasiclassical approximation in the scattering problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 52
EP  - 58
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a4/
LA  - ru
ID  - TMF_1976_29_1_a4
ER  - 
%0 Journal Article
%A A. V. Kuzmenko
%T Representation of the wave function by a~functional integral and the quasiclassical approximation in the scattering problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 52-58
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a4/
%G ru
%F TMF_1976_29_1_a4
A. V. Kuzmenko. Representation of the wave function by a~functional integral and the quasiclassical approximation in the scattering problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 1, pp. 52-58. http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a4/