Estimate of the entropy of radiation by means of weight functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 1, pp. 126-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The entropy of radiation is estimated by means of weight functions that characterize the representation of the density operator in coherent states. An upper bound is always valid and a lower bound when there is a positive $\mathscr P$-representation. A necessary condition is formulated that must be satisfied by the diagonal elements of the density operator in the population number space if the operator is to have a positive $\mathscr P$-representation.
@article{TMF_1976_29_1_a12,
     author = {V. Ya. Anisimov and B. A. Sotskii},
     title = {Estimate of the entropy of radiation by means of weight functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {126--129},
     year = {1976},
     volume = {29},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a12/}
}
TY  - JOUR
AU  - V. Ya. Anisimov
AU  - B. A. Sotskii
TI  - Estimate of the entropy of radiation by means of weight functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 126
EP  - 129
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a12/
LA  - ru
ID  - TMF_1976_29_1_a12
ER  - 
%0 Journal Article
%A V. Ya. Anisimov
%A B. A. Sotskii
%T Estimate of the entropy of radiation by means of weight functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 126-129
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a12/
%G ru
%F TMF_1976_29_1_a12
V. Ya. Anisimov; B. A. Sotskii. Estimate of the entropy of radiation by means of weight functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 29 (1976) no. 1, pp. 126-129. http://geodesic.mathdoc.fr/item/TMF_1976_29_1_a12/

[1] G. G. Khardi, D. E. Littlvud, G. Polia, Neravenstva, IL, 1948

[2] R. Glauber, Kvantovaya optika i kvantovaya radiofizika, Sb., «Mir», 1966

[3] V. Ya. Anisimov, B. A. Sotskii, TMF, 14 (1973), 282

[4] K. E. Cahill, R. J. Glauber, Phys. Rev., 177 (1969), 1882 | DOI

[5] V. Ya. Anisimov, B. A. Sotskii, Dokl. AN BSSR, 18 (1974), 210