Percus–Yevick type approximations and the Ising model
Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 3, pp. 389-397
Cet article a éte moissonné depuis la source Math-Net.Ru
For the Ising model with short range, approximations similar to the Percus–Yevick approximation are constructed. It is shown that among them one can select a complete class of approximations, call Percus–Yevick type approximations, which can be solved exactly. Near the critical point, the solution thus obtained gives the classical values of the critical indices. It is shown that one can readily construct an approximation of the Percus–Yevick type with an equation of state satisfying the scaling hypothesis.
@article{TMF_1976_28_3_a9,
author = {V. L. Kuz'min},
title = {Percus{\textendash}Yevick type approximations and the {Ising} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {389--397},
year = {1976},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_28_3_a9/}
}
V. L. Kuz'min. Percus–Yevick type approximations and the Ising model. Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 3, pp. 389-397. http://geodesic.mathdoc.fr/item/TMF_1976_28_3_a9/
[1] J. K. Percus, J. G. Yevick, Phys. Rev., 110 (1958), 1 | DOI | MR | Zbl
[2] M. S. Wertheim, J. Math. Phys., 5 (1964), 643 | DOI | MR | Zbl
[3] L. P. Kadanoff et al., Rev. Mod. Phys., 39 (1967), 395 | DOI
[4] J. K. Percus, Phys. Rev. Lett., 8 (1962), 462 | DOI
[5] N. P. Kovalenko, I. Z. Fisher, UFN, 108 (1972), 209 | DOI
[6] J. Lebowitz, J. K. Percus, J. Math. Phys., 4 (1963), 1495 | DOI | MR
[7] A. Z. Patashinskii, V. L. Pokrovskii, ZhETF, 50 (1966), 439
[8] M. J. van Leeuwen, J. Growenwelt, J. de Boer, Physica, 25 (1959), 792 | DOI | MR | Zbl
[9] G. S. Rushbrooke, P. J. Wood, Molec. Phys., 1 (1958), 257 | DOI
[10] G. Stenli, Fazovye perekhody i kriticheskie yavleniya, «Mir», 1973