Hydrodynamic action and Bose spectrum of superfluid Fermi systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 3, pp. 340-351

Voir la notice de l'article provenant de la source Math-Net.Ru

A “hydrodynamic action” functional for a superfluid Fermi gas is constructed in the path integral formalism. The integral over the Fermi fields is transformed into an integral over the Bose field that describes the Cooper pairs (and also over the field of the electric potential in the model with Coulomb interaction). An investigation is made of the Bose spectrum determined by the hydrodynamic action. For $T\sim T_c$ two branches of the spectrum are obtained. For $T\ll T_c$, the dispersion is calculated and stability with respect to decays of Bogolyubov sound is proved. The branch $E\approx 2\Delta$ is investigated; this remains when a Coulomb interaction is added.
@article{TMF_1976_28_3_a4,
     author = {V. A. Andrianov and V. N. Popov},
     title = {Hydrodynamic action and {Bose} spectrum of superfluid {Fermi} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {340--351},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_28_3_a4/}
}
TY  - JOUR
AU  - V. A. Andrianov
AU  - V. N. Popov
TI  - Hydrodynamic action and Bose spectrum of superfluid Fermi systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 340
EP  - 351
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_28_3_a4/
LA  - ru
ID  - TMF_1976_28_3_a4
ER  - 
%0 Journal Article
%A V. A. Andrianov
%A V. N. Popov
%T Hydrodynamic action and Bose spectrum of superfluid Fermi systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 340-351
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1976_28_3_a4/
%G ru
%F TMF_1976_28_3_a4
V. A. Andrianov; V. N. Popov. Hydrodynamic action and Bose spectrum of superfluid Fermi systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 3, pp. 340-351. http://geodesic.mathdoc.fr/item/TMF_1976_28_3_a4/