On $\Sigma$ models of spontane ously broken symmetries
Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 3, pp. 320-330 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The group-theoretical aspects of spontaneous breaking in linear $\Sigma$ models are discussed. General conditions are formulated which must be satisfied by a multiplet of the group $G$ (compact or noncompact) for the construction on it of a $\Sigma$ model with given stability subgroup $H$ of the vacuum. It is shown that application of the general formalism of models to the case of spontaneously broken space-time symmetries requires the introduction of additional coordinates beyond the four coordinates $x_\mu$. An investigation is also made of the connection between $\Sigma$ models of internal symmetries and the corresponding nonlinear realizations.
@article{TMF_1976_28_3_a2,
     author = {E. A. Ivanov},
     title = {On $\Sigma$~models of spontane ously broken symmetries},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {320--330},
     year = {1976},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_28_3_a2/}
}
TY  - JOUR
AU  - E. A. Ivanov
TI  - On $\Sigma$ models of spontane ously broken symmetries
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 320
EP  - 330
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_28_3_a2/
LA  - ru
ID  - TMF_1976_28_3_a2
ER  - 
%0 Journal Article
%A E. A. Ivanov
%T On $\Sigma$ models of spontane ously broken symmetries
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 320-330
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1976_28_3_a2/
%G ru
%F TMF_1976_28_3_a2
E. A. Ivanov. On $\Sigma$ models of spontane ously broken symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 3, pp. 320-330. http://geodesic.mathdoc.fr/item/TMF_1976_28_3_a2/

[1] S. Coleman, J. Wess, B. Zumino, Phys. Rev., 177 (1969), 2239 | DOI

[2] A. Salam, J. Strathdee, Phys. Rev., 184 (1969), 1750 ; C. Isham, A. Salam, J. Strathdee, Ann. Phys. (N. Y.), 62 (1971), 98 | DOI | MR | DOI | MR | Zbl

[3] D. V. Volkov, EChAYa, 4 (1973), 3 | MR

[4] V. I. Ogievetsky, Proceedings of X-th Winter School of Theoretical Physics in Karpacz, v. 1, Wroclaw, 1974, 117 | MR

[5] J. Goldstone, A. Salam, S. Weinberg, Phys. Rev., 127 (1962), 965 | DOI | MR | Zbl

[6] S. Weinberg, Phys. Rev., D7 (1973), 1068

[7] B. W. Lee, E. Abers, Physics Reports, 9c:1 (1973), 1

[8] B. W. Lee, J. Zinn-Justin, Phys. Rev., D5 (1972), 3137

[9] A. B. Borisov, V. I. Ogievetskii, TMF, 21 (1974), 329

[10] S. Weinberg, Phys. Rev. Lett., 18 (1967), 188 | DOI

[11] T. W. B. Kibble, Phys. Rev., 155 (1967), 1554 | DOI

[12] W. A. Bardeen, B. W. Lee, Phys. Rev., 177 (1969), 2389 | DOI

[13] A. Z. Dubničkova, Preprint JINR E2-8696, Dubna, 1975 | MR

[14] E. A. Ivanov, V. I. Ogievetskii, TMF, 25 (1975), 164

[15] M. Gell-Mann, M. Levy, Nuovo Cim., 16 (1960), 705 | DOI | MR | Zbl

[16] S. Weinberg, Phys. Rev. Lett., 29 (1972), 388 | DOI

[17] J. M. Cornwall, D. N. Levin, G. Tiktopoulos, Phys. Rev., D10 (1974), 1145

[18] S. Weinberg, Phys. Rev. Lett., 29 (1972), 1698 | DOI

[19] A. Salam, J. Strathdee, Nucl. Phys., B76 (1974), 477 | DOI | MR

[20] M. Kaku, K. Kikkawa, Phys. Rev., D10 (1974), 1110 ; C. Marshall, P. Ramond, Nucl. Phys., B85 (1975), 375 | MR | DOI