Infinite products and $T$~products of exponentials
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 2, pp. 189-200
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Simple explicit expressions are obtained for the logarithm of a $T$ product and finite and infinite products of exponentials; these generalize the  Kampbell–Hausdorff–Baker–Dynkin formula. The proofs do not use series expansions and are based on the general calculus of functions of noncommuting operators. The analog of the Wick formula in an arbitrary Lie algebra is obtained.
			
            
            
            
          
        
      @article{TMF_1976_28_2_a4,
     author = {M. V. Karasev and M. V. Mosolova},
     title = {Infinite products and $T$~products of exponentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {189--200},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_28_2_a4/}
}
                      
                      
                    M. V. Karasev; M. V. Mosolova. Infinite products and $T$~products of exponentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 2, pp. 189-200. http://geodesic.mathdoc.fr/item/TMF_1976_28_2_a4/
