Scaling for the fixed-angle scattering amplitude in the framework of the Dyson–Jost–Lehmann representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 2, pp. 157-171
Cet article a éte moissonné depuis la source Math-Net.Ru
Necessary and sufficient conditions are established for the existence of power scaling of the large-angle scattering amplitude. The connection between the asymptotic behavior of the scattering amplitude off the mass shell at fixed angle and the behavior of the product of local currents at short distances is discussed.
@article{TMF_1976_28_2_a1,
author = {\`E. Wieczorek and B. Gaier and T. Gernits and V. A. Matveev and D. Robaschik and A. N. Tavkhelidze},
title = {Scaling for the fixed-angle scattering amplitude in the framework of the {Dyson{\textendash}Jost{\textendash}Lehmann} representation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {157--171},
year = {1976},
volume = {28},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_28_2_a1/}
}
TY - JOUR AU - È. Wieczorek AU - B. Gaier AU - T. Gernits AU - V. A. Matveev AU - D. Robaschik AU - A. N. Tavkhelidze TI - Scaling for the fixed-angle scattering amplitude in the framework of the Dyson–Jost–Lehmann representation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1976 SP - 157 EP - 171 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1976_28_2_a1/ LA - ru ID - TMF_1976_28_2_a1 ER -
%0 Journal Article %A È. Wieczorek %A B. Gaier %A T. Gernits %A V. A. Matveev %A D. Robaschik %A A. N. Tavkhelidze %T Scaling for the fixed-angle scattering amplitude in the framework of the Dyson–Jost–Lehmann representation %J Teoretičeskaâ i matematičeskaâ fizika %D 1976 %P 157-171 %V 28 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1976_28_2_a1/ %G ru %F TMF_1976_28_2_a1
È. Wieczorek; B. Gaier; T. Gernits; V. A. Matveev; D. Robaschik; A. N. Tavkhelidze. Scaling for the fixed-angle scattering amplitude in the framework of the Dyson–Jost–Lehmann representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 2, pp. 157-171. http://geodesic.mathdoc.fr/item/TMF_1976_28_2_a1/
[1] V. A. Matveev, R. M. Muradyan, A. N. Tavkhelidze, EChAYa, 2:1 (1970), 2 | Zbl
[2] V. A. Matveev, R. M. Muradyan, A. N. Tavkhelidze, Lett. Nuovo Cim., 7 (1973), 719 | DOI
[3] N. N. Bogolyubov, A. N. Tavkhelidze, V. S. Vladimirov, TMF, 12 (1972), 305 | MR
[4] B. I. Zavyalov, TMF, 17 (1973), 178
[5] E. Vitsorek, V. A. Matveev, D. Robaschik, A. N. Tavkhelidze, TMF, 16 (1973), 315 ; Э. Вицорек, В. А. Матвеев, Д. Робащик, ТМФ, 19 (1974), 14
[6] A. A. Logunov, M. A. Mestvirishvili, V. A. Petrov, Preprint IFVE STF-74-76, Serpukhov, 1974
[7] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, 1963 | MR