Derivation of a~quasipotential equation by the Fock--Podolsky method
Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 1, pp. 3-26
Voir la notice de l'article provenant de la source Math-Net.Ru
The Fock–Podolsky (Tamm–Dancoff) method is used to derive a quasipotential equation
for the one-time wave ftmction from the equations of quantum electrodynamics. The connection between this equation and the inhomogeneous equation for the four-point Green's function is established. It is shown that although there is no manifest covariance of the expressions for the Green's function in the Coulomb gauge, one can perform a consistent renormalization of the divergent integrals in at least the second order in the charge $e$. It is noted that in this approach one can derive (in a certain approximation) the Breit equation for the fine structure of energy levels.
@article{TMF_1976_28_1_a0,
author = {D. I. Blokhintsev and V. A. Rizov and I. T. Todorov},
title = {Derivation of a~quasipotential equation by the {Fock--Podolsky} method},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--26},
publisher = {mathdoc},
volume = {28},
number = {1},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_28_1_a0/}
}
TY - JOUR AU - D. I. Blokhintsev AU - V. A. Rizov AU - I. T. Todorov TI - Derivation of a~quasipotential equation by the Fock--Podolsky method JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1976 SP - 3 EP - 26 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1976_28_1_a0/ LA - ru ID - TMF_1976_28_1_a0 ER -
%0 Journal Article %A D. I. Blokhintsev %A V. A. Rizov %A I. T. Todorov %T Derivation of a~quasipotential equation by the Fock--Podolsky method %J Teoretičeskaâ i matematičeskaâ fizika %D 1976 %P 3-26 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1976_28_1_a0/ %G ru %F TMF_1976_28_1_a0
D. I. Blokhintsev; V. A. Rizov; I. T. Todorov. Derivation of a~quasipotential equation by the Fock--Podolsky method. Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 1, pp. 3-26. http://geodesic.mathdoc.fr/item/TMF_1976_28_1_a0/