Derivation of a quasipotential equation by the Fock–Podolsky method
Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 1, pp. 3-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Fock–Podolsky (Tamm–Dancoff) method is used to derive a quasipotential equation for the one-time wave ftmction from the equations of quantum electrodynamics. The connection between this equation and the inhomogeneous equation for the four-point Green's function is established. It is shown that although there is no manifest covariance of the expressions for the Green's function in the Coulomb gauge, one can perform a consistent renormalization of the divergent integrals in at least the second order in the charge $e$. It is noted that in this approach one can derive (in a certain approximation) the Breit equation for the fine structure of energy levels.
@article{TMF_1976_28_1_a0,
     author = {D. I. Blokhintsev and V. A. Rizov and I. T. Todorov},
     title = {Derivation of a~quasipotential equation by the {Fock{\textendash}Podolsky} method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--26},
     year = {1976},
     volume = {28},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_28_1_a0/}
}
TY  - JOUR
AU  - D. I. Blokhintsev
AU  - V. A. Rizov
AU  - I. T. Todorov
TI  - Derivation of a quasipotential equation by the Fock–Podolsky method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 3
EP  - 26
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_28_1_a0/
LA  - ru
ID  - TMF_1976_28_1_a0
ER  - 
%0 Journal Article
%A D. I. Blokhintsev
%A V. A. Rizov
%A I. T. Todorov
%T Derivation of a quasipotential equation by the Fock–Podolsky method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 3-26
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1976_28_1_a0/
%G ru
%F TMF_1976_28_1_a0
D. I. Blokhintsev; V. A. Rizov; I. T. Todorov. Derivation of a quasipotential equation by the Fock–Podolsky method. Teoretičeskaâ i matematičeskaâ fizika, Tome 28 (1976) no. 1, pp. 3-26. http://geodesic.mathdoc.fr/item/TMF_1976_28_1_a0/

[1] V. Fock, Sow. Phys., 6 (1934), 425 | Zbl

[2] V. Fock, B. Podolsky, Sow. Phys., 1 (1932), 798 | Zbl

[3] V. Fock, B. Podolsky, Sow. Phys., 1 (1932), 801 | Zbl

[4] Problemy sovremennoi fiziki, no. 10, IL, 1955

[5] G. M. Desimirov, M. D. Mateev, Nuovo Cim., 52A (1967), 1366 | DOI

[6] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cim., 29 (1963), 380 ; Nguyen Van Hieu, R. N. Faustov, Nucl. Phys., 53 (1964), 337 | DOI | MR | DOI | MR

[7] E. Nissimov, S. Pacheva, Bulg. J. Phys., 2 (1975), 323 | MR

[8] A. N. Kvinikhidze, D. Stoyanov, TMF, 11 (1972), 23 ; Preprint JINR E2-5746, Dubna, 1971

[9] P. A. M. Dirac, R. Peierls, M. H. L. Pryce, Proc. Cambridge Phil. Soc., 39 (1942), 193 | DOI | MR

[10] K. Baumann, Z. Phys., 152 (1958), 448 | DOI | MR | Zbl

[11] S. Pacheva, Bulg. J. Phys., 3 (1976), 201

[12] I. V. Polubarinov, Preprint OIYaI R2-2421, Dubna, 1965

[13] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Relyativistskaya kvantovaya teoriya, t. 1, «Nauka», 1968 | MR