Method of $m$-particle density matrices of the canonical ensemble in the description of states of quantum systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 360-372
Cet article a éte moissonné depuis la source Math-Net.Ru
A rigorous mathematical description is given of equilibrium states of quantum systems on the basis of the theory of the canonical ensemble. For the $m$-particle density matrices of the canonical ensemble in finite volume relations are obtained which go over into the Kirkwood–Salzburg integral equations in the case of infinite Systems. Existence and uniqueness is proved for the limit $m$-particle density matrices of the canonical ensemble; their analytic dependence on the density is investigated; and it is shown that the canonical and the grand canonical ensemble are equivalent in the thermodynamic limit.
@article{TMF_1976_27_3_a8,
author = {K. S. Matviichuk},
title = {Method of $m$-particle density matrices of the canonical ensemble in the description of states of quantum systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {360--372},
year = {1976},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a8/}
}
TY - JOUR AU - K. S. Matviichuk TI - Method of $m$-particle density matrices of the canonical ensemble in the description of states of quantum systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1976 SP - 360 EP - 372 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a8/ LA - ru ID - TMF_1976_27_3_a8 ER -
%0 Journal Article %A K. S. Matviichuk %T Method of $m$-particle density matrices of the canonical ensemble in the description of states of quantum systems %J Teoretičeskaâ i matematičeskaâ fizika %D 1976 %P 360-372 %V 27 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a8/ %G ru %F TMF_1976_27_3_a8
K. S. Matviichuk. Method of $m$-particle density matrices of the canonical ensemble in the description of states of quantum systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 360-372. http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a8/
[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR
[2] N. N. Bogolyubov, B. I. Khatset, DAN SSSR, 66 (1949), 321 | MR | Zbl
[3] B. I. Khatset, Naukovi zapiski Zhitomirskogo pedagogichnogo institutu, fizmat. cepiya, 3 (1956), 113
[4] N. N. Bogolyubov, D. Ya. Petrina, B. I. Khatset, TMF, 1 (1969), 251
[5] D. Ruelle, Ann. Phys., 25 (1963), 209 | DOI | MR
[6] J. Ginibre, J. Math. Phys., 6 (1965), 238 | DOI | MR | Zbl
[7] J. Ginibre, J. Math. Phys., 6 (1965), 1432 | DOI | MR | Zbl
[8] E. Nelson, J. Math. Phys., 5 (1964), 332 | DOI | MR | Zbl