Integrodifferential equations for partial distribution functions in classical statistical physics
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 352-359
Cet article a éte moissonné depuis la source Math-Net.Ru
For a single-component infinite equilibrium system with maay-particle interaction of definite class it is shown that the partial ($s$-particle) distribution functions satisfy a generalized BBGKY hierarchy for all positive values of the temperature and activity. The results are then extended to many-component systems with binary interaction.
@article{TMF_1976_27_3_a7,
author = {G. I. Nazin},
title = {Integrodifferential equations for partial distribution functions in classical statistical physics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {352--359},
year = {1976},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a7/}
}
TY - JOUR AU - G. I. Nazin TI - Integrodifferential equations for partial distribution functions in classical statistical physics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1976 SP - 352 EP - 359 VL - 27 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a7/ LA - ru ID - TMF_1976_27_3_a7 ER -
G. I. Nazin. Integrodifferential equations for partial distribution functions in classical statistical physics. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 352-359. http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a7/
[1] G. I. Nazin, TMF, 21 (1974), 388 | MR | Zbl
[2] G. I. Nazin, TMF, 25 (1975), 132 | MR | Zbl
[3] B. G. Abrosimov, Izv. vuzov, ser. fiz., 1 (1975), 000
[4] D. Rashbruk, Fizika prostykh zhidkostei, Sb., «Mir», 1971
[5] N. N. Bogolyubov, B. I. Khatset, DAN SSSR, 66 (1949), 321 | MR | Zbl
[6] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, GITTL, 1946 | MR
[7] E. A. Arinshtein, DAN SSSR, 114 (1975), 1189 | MR