Integrodifferential equations for partial distribution functions in classical statistical physics
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 352-359
Voir la notice de l'article provenant de la source Math-Net.Ru
For a single-component infinite equilibrium system with maay-particle interaction
of definite class it is shown that the partial ($s$-particle) distribution functions satisfy a generalized BBGKY hierarchy for all positive values of the temperature and activity.
The results are then extended to many-component systems with binary interaction.
@article{TMF_1976_27_3_a7,
author = {G. I. Nazin},
title = {Integrodifferential equations for partial distribution functions in classical statistical physics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {352--359},
publisher = {mathdoc},
volume = {27},
number = {3},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a7/}
}
TY - JOUR AU - G. I. Nazin TI - Integrodifferential equations for partial distribution functions in classical statistical physics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1976 SP - 352 EP - 359 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a7/ LA - ru ID - TMF_1976_27_3_a7 ER -
G. I. Nazin. Integrodifferential equations for partial distribution functions in classical statistical physics. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 352-359. http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a7/