Solution of a singular quasipotential equation for bound states
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 323-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Logunov–Tavkhelidze quasipotential equation for scalar particles of equal masses and a potential $V(r)=gr^{-1}$ in the coordinate representation is reduced to a secondorder differential boundary-value problem in the momentum representation. The corresponding bound-state problem is considered for the $S$-wave. The method of matching solutions is used to obtain a spectrum of weakly bound states; this is similar to the energy spectrum of the Schrödinger equation with the potential $V(r)=-g'r^{-2}$, but differs from it in that the problem of the collapse onto the scattering center does not arise. A comparison equation method is formulated and applied to this problem and used to obtain a discrete energy spectrum for all binding energies.
@article{TMF_1976_27_3_a5,
     author = {V. Sh. Gogokhiya and D. P. Mavlo and A. T. Filippov},
     title = {Solution of a~singular quasipotential equation for bound states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--336},
     year = {1976},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a5/}
}
TY  - JOUR
AU  - V. Sh. Gogokhiya
AU  - D. P. Mavlo
AU  - A. T. Filippov
TI  - Solution of a singular quasipotential equation for bound states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1976
SP  - 323
EP  - 336
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a5/
LA  - ru
ID  - TMF_1976_27_3_a5
ER  - 
%0 Journal Article
%A V. Sh. Gogokhiya
%A D. P. Mavlo
%A A. T. Filippov
%T Solution of a singular quasipotential equation for bound states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1976
%P 323-336
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a5/
%G ru
%F TMF_1976_27_3_a5
V. Sh. Gogokhiya; D. P. Mavlo; A. T. Filippov. Solution of a singular quasipotential equation for bound states. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 323-336. http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a5/

[1] V. Sh. Gogokhiya, A. T. Filippov, TMF, 21 (1974), 37 | Zbl

[2] B. A. Arbuzov, A. T. Filippov, Phys. Lett., 13 (1964), 95 | DOI | MR

[3] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cim., 29 (1963), 380 | DOI | MR

[4] D. P. Mavlo, I. V. Puzynin, A. T. Filippov, Preprint OIYaI R2-8689, Dubna, 1975

[5] R. Langer, Trans. Am. Math. Soc., 33 (1931), 23 ; ibid., 34 (1932), 447 ; ibid., 36 (1934), 90 | DOI | MR | Zbl | DOI | Zbl | DOI | Zbl

[6] A. T. Filippov, Preprint JINR E2-6937, Dubna, 1973; JINR E2-7929, Dubna, 1974; Б. С. Гетманов, А. Т. Филиппов, ТМФ, 8 (1971), 3

[7] R. N. Faustov, EChAYa, 3 (1972), 238 | MR

[8] I. T. Todorov, Trieste preprint IC/69/96, 1969 ; В. Б. Крапчев, В. А. Ризов, И. Т. Тодоров, Препринт ОИЯИ Р2-7311, Дубна, 1973 | MR

[9] V. G. Kadyshevskii, R. M. Mir-Kasimov, M. Friman, YaF, 9 (1969), 646 | MR

[10] A. T. Filippov, Mezhdunarodnaya zimnyaya shkola teoreticheskoi fiziki pri OIYaI, t. 2, Dubna, 1964

[11] G. Beitman, A. Erdeii, Vysshie transtsendentnye funktsii, t. 1, «Nauka», 1965 | MR

[12] K. M. Case, Phys. Rev., 80 (1950), 797 | DOI | MR | Zbl

[13] T. M. Cherry, Trans. Amer. Math. Soc., 68 (1950), 224 | DOI | MR | Zbl

[14] R. B. Dingle, Appl. Sci. Res., B5 (1956), 345 | DOI | MR | Zbl

[15] A. R. Forsyth, A Treatise on Differential Equations, 6-th ed., MacMillan, London, 1929 | MR | Zbl

[16] C. E. Hecht, J. E. Mayer, Phys. Rev., 106 (1957), 1156 | DOI | MR | Zbl

[17] Dzh. Kheding, Vvedenie v metod fazovykh integralov (metod VKB), «Mir», 1965

[18] L. I. Ponomarev, Preprint ITF-67-53, Kiev, 1968

[19] A. N. Tavkhelidze, Lectures on Quasipotential Method in Field Theory, Tata Institute of Fundamental Research, Bombay, 1964; В. Г. Кадышевский, А. Н. Тавхелидзе, Проблемы теоретической физики, «Наука», 1969

[20] N. Nakanishi, Progr. Theor. Phys. Suppl., 1969, no. 43 | MR