Scattering operator for interactions with strong cutoff
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 297-306
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of the general properties of scattering systems in which the motion is generated by a Hamiltonian of the form $H=H_0+V$, where smooth spatial and momentum cutoffs are made in $V$. The algebra of the asymptotic fields is studied and sufficient conditions are found for the existence of a scattering operator; some general properties of this operator are proved.
@article{TMF_1976_27_3_a2,
author = {L. A. Dadashev and V. Yu. Kuliev},
title = {Scattering operator for interactions with strong cutoff},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {297--306},
year = {1976},
volume = {27},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a2/}
}
L. A. Dadashev; V. Yu. Kuliev. Scattering operator for interactions with strong cutoff. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 297-306. http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a2/
[1] K. O. Fridrikhs, Vozmuschenie spektra operatorov v gilbertovom prostranstve, «Mir», 1969
[2] Y. Kato, N. Mugibayashi, Progr. Theor. Phys. (Kyoto), 30 (1963), 103 | DOI | MR
[3] R. Höegh-Krohn, J. Math. Phis., 9 (1968), 2075 | DOI | MR
[4] R. Höegh-Krohn, Commun. Math. Phys., 12 (1969), 216 | DOI | MR
[5] F. A. Berezin, Metod vtorichnogo kvantovaniya, «Nauka», 1965 | MR
[6] Ya. M. Yakymiv, Preprint ITF-71-52R, 1971 | MR
[7] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, «Nauka», 1966 | MR | Zbl