Scattering operator for interactions with strong cutoff
Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 297-306
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of the general properties of scattering systems in which the motion is
generated by a Hamiltonian of the form $H=H_0+V$, where smooth spatial and momentum
cutoffs are made in $V$. The algebra of the asymptotic fields is studied and sufficient
conditions are found for the existence of a scattering operator; some general properties
of this operator are proved.
@article{TMF_1976_27_3_a2,
author = {L. A. Dadashev and V. Yu. Kuliev},
title = {Scattering operator for interactions with strong cutoff},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {297--306},
publisher = {mathdoc},
volume = {27},
number = {3},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a2/}
}
L. A. Dadashev; V. Yu. Kuliev. Scattering operator for interactions with strong cutoff. Teoretičeskaâ i matematičeskaâ fizika, Tome 27 (1976) no. 3, pp. 297-306. http://geodesic.mathdoc.fr/item/TMF_1976_27_3_a2/